Monochromatic configurations in finite colorings of \mathbb{N} - a dynamical approach

Joel P. Moreira joel.moreira@northwestern.edu

Department of Mathematics Northwestern University

November 22, 2017

Theorem (Schur)

For any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exits $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x + y\} \subset C$.

Issai Schur

I. Schur, Jahresbericht der Deutschen Math, 1916

Theorem (Schur)

For any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exits $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x + y\} \subset C$.

Theorem (Schur, again)

For every r there exists $N \in \mathbb{N}$ such that for every partition $\{1, \ldots, N\} = C_1 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \{1, \ldots, N\}$ such that $\{x, y, x + y\} \subset C$.

Issai Schur

I. Schur, Jahresbericht der Deutschen Math, 1916

Theorem (Schur)

For any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exits $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x + y\} \subset C$.

Issai Schur

Theorem (Schur, again)

For every r there exists $N \in \mathbb{N}$ such that for every partition $\{1, \ldots, N\} = C_1 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \{1, \ldots, N\}$ such that $\{x, y, x + y\} \subset C$.

Schur used this to show that any large enough finite field contains nontrivial solutions to Fermat's equation $x^n + y^n = z^n$.

I. Schur, Jahresbericht der Deutschen Math, 1916

Theorem (van der Waerden)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N} = C_1 \cup \cdots \cup C_r$, there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

$$\{x, x+y, x+2y, \ldots, x+ky\} \subset C$$

Theorem (van der Waerden)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N} = C_1 \cup \cdots \cup C_r$, there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

$$\{x, x+y, x+2y, \ldots, x+ky\} \subset C$$

Theorem (Brauer)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N} = C_1 \cup \cdots \cup C_r$, there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

$$\{x, y, x + y, x + 2y, \dots, x + ky\} \subset C$$

Theorem (van der Waerden)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N} = C_1 \cup \cdots \cup C_r$, there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

$$\{x, x+y, x+2y, \ldots, x+ky\} \subset C$$

Theorem (Brauer)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N} = C_1 \cup \cdots \cup C_r$, there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

$$\{x, y, x + y, x + 2y, \dots, x + ky\} \subset C$$

For every $k \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

- ► Schur: $\{x, y, x + y\} \subset C$.
- ▶ van der Waerden: $\{x, x + y, x + 2y, ..., x + ky\} \subset C$.
- **▶ Brauer:** $\{x, y, x + y, x + 2y, ..., x + ky\} \subset C.$

For every $k \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

► Schur:
$$\{x, y, x + y\} \subset C$$
.

▶ van der Waerden:
$$\{x, x + y, x + 2y, \dots, x + ky\} \subset C$$
.

▶ Brauer:
$$\{x, y, x + y, x + 2y, ..., x + ky\} \subset C$$
.

Problem

Let $f_1, \ldots, f_k : \mathbb{N}^m \to \mathbb{N}$. Under what conditions is it true that for any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $\mathbf{x} \in \mathbb{N}^m$ such that $\{f_1(\mathbf{x}), \ldots, f_k(\mathbf{x})\} \subset C$?

For every $k \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

► Schur:
$$\{x, y, x + y\} \subset C$$
.

▶ van der Waerden:
$$\{x, x + y, x + 2y, \dots, x + ky\} \subset C$$
.

▶ Brauer:
$$\{x, y, x + y, x + 2y, ..., x + ky\} \subset C$$
.

Problem

Let $f_1, \ldots, f_k : \mathbb{N}^m \to \mathbb{N}$. Under what conditions is it true that for any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $\mathbf{x} \in \mathbb{N}^m$ such that $\{f_1(\mathbf{x}), \ldots, f_k(\mathbf{x})\} \subset C$?

We say that $\{f_1(\mathbf{x}), \dots, f_k(\mathbf{x})\}\$ is a partition regular configuration.

Theorem (Folkman-Sanders-Rado)

For every $m \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\begin{cases} x_0 \\ x_1, & x_1 + x_0 \end{cases}$$

Theorem (Folkman-Sanders-Rado)

For every $m \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\begin{cases} x_0 \\ x_1, & x_1 + x_0 \\ x_2, & x_2 + x_1, & x_2 + x_0 \end{cases} x_2 + x_1 + x_0$$

Theorem (Folkman-Sanders-Rado)

For every $m \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\left\{
\begin{array}{l}
x_0 \\
x_1, & x_1 + x_0 \\
x_2, & x_2 + x_1, & x_2 + x_0 & x_2 + x_1 + x_0 \\
\vdots & \vdots & \vdots & \ddots \\
x_m, & x_m + x_{m-1}, & \dots & x_m + x_{m-1} + \dots + x_0
\end{array}
\right\} \subset C$$

For every $m, k \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\begin{cases} x_0, \\ ix_0 + x_1, \end{cases} \qquad i \in \{0, \dots, k\}$$

For every $m, k \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\begin{cases} x_0, \\ ix_0 + x_1, \\ ix_0 + jx_1 + x_2, \end{cases} \qquad i \in \{0, \dots, k\}$$

For every $m, k \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\left\{
\begin{array}{ll}
x_{0}, & & & i \in \{0, \dots, k\} \\
ix_{0} + x_{1}, & & i, j \in \{0, \dots, k\} \\
ix_{0} + jx_{1} + x_{2}, & & i, j \in \{0, \dots, k\} \\
\vdots & & \vdots & & \vdots \\
i_{0}x_{0} + \dots + i_{m-1}x_{m-1} + x_{m}, & i_{m-1}, \dots, i_{0} \in \{0, \dots, k\}
\end{array}\right\} \subset C$$

For every $m, k, c \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\left\{
\begin{array}{ll}
\mathbf{c} x_{0}, & & & i \in \{0, \dots, k\} \\
i x_{0} + \mathbf{c} x_{1}, & & i \in \{0, \dots, k\} \\
i x_{0} + j x_{1} + \mathbf{c} x_{2}, & & i, j \in \{0, \dots, k\} \\
\vdots & & \vdots & & \vdots \\
i_{0} x_{0} + \dots + i_{m-1} x_{m-1} + \mathbf{c} x_{m}, & i_{m-1}, \dots, i_{0} \in \{0, \dots, k\}
\end{array}\right\} \subset C$$

In fact all partition regular linear configurations are contained in Deuber's theorem.

For every $m, k, c \in \mathbb{N}$ and any finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\left\{
\begin{array}{ll}
\mathbf{c} x_{0}, & & & i \in \{0, \dots, k\} \\
i x_{0} + \mathbf{c} x_{1}, & & i \in \{0, \dots, k\} \\
i x_{0} + j x_{1} + \mathbf{c} x_{2}, & & i, j \in \{0, \dots, k\} \\
\vdots & & \vdots & & \vdots \\
i_{0} x_{0} + \dots + i_{m-1} x_{m-1} + \mathbf{c} x_{m}, & i_{m-1}, \dots, i_{0} \in \{0, \dots, k\}
\end{array}\right\} \subset C$$

In fact all partition regular linear configurations are contained in Deuber's theorem.

The complete classification of partition regular linear configurations was first obtained by R. Rado in 1933 using a different language.

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that:

Theorem (Furstenberg-Sárközy) $\{x, x + y^2\} \subset C$.

H. Furstenberg, J. d'Analyse Math., 1977

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that:

Theorem (Furstenberg-Sárközy)

 $\{x, x + f(y)\} \subset C$ for every $f \in \mathbb{Z}[x]$ with f(0) = 0.

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that:

$$\{x, x + f(y)\} \subset C$$
 for every $f \in \mathbb{Z}[x]$ with $f(0) = 0$.

Bergelson and Leibman extended this to

Theorem (Polynomial van der Waerden theorem)

Let $f_1, \ldots, f_k \in \mathbb{Z}[x]$ be polynomials such that $f_i(0) = 0$ for all $i = 1, \ldots, k$. Then for any finite coloring of $\mathbb{N} = C_1 \cup \cdots \cup C_r$ there exist a color $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that

$$\{x, x + f_1(y), x + f_2(y), \dots, x + f_k(y)\} \subset C$$

H. Furstenberg, J. d'Analyse Math., 1977

A. Sárközy, Acta Math. Acad. Sci. Hungar., 1978

V. Bergelson and A. Leibman, , 1996

Let $m, c \in \mathbb{N}$ and, for each i = 1, 2, ..., m, let F_i be a finite set of polynomials $f : \mathbb{Z}^i \to \mathbb{Z}$ such that $f(\mathbf{0}) = 0$. Then for any finite coloring $\mathbb{N} = C_1 \cup \cdots \cup C_r$ there exists a color $C \in \{C_1, ..., C_r\}$ and $x_0, ..., x_m \in \mathbb{N}$ such that

$$\begin{cases} cx_0 \\ f(x_0) + cx_1, \end{cases} f \in F_1$$

Let $m, c \in \mathbb{N}$ and, for each i = 1, 2, ..., m, let F_i be a finite set of polynomials $f : \mathbb{Z}^i \to \mathbb{Z}$ such that $f(\mathbf{0}) = 0$. Then for any finite coloring $\mathbb{N} = C_1 \cup \cdots \cup C_r$ there exists a color $C \in \{C_1, ..., C_r\}$ and $x_0, ..., x_m \in \mathbb{N}$ such that

```
\begin{cases} cx_0 \\ f(x_0) + cx_1, & f \in F_1 \\ f(x_0, x_1) + cx_2, & f \in F_2 \\ \vdots & \vdots \end{cases}
```

Let $m, c \in \mathbb{N}$ and, for each i = 1, 2, ..., m, let F_i be a finite set of polynomials $f : \mathbb{Z}^i \to \mathbb{Z}$ such that $f(\mathbf{0}) = 0$. Then for any finite coloring $\mathbb{N} = C_1 \cup \cdots \cup C_r$ there exists a color $C \in \{C_1, ..., C_r\}$ and $x_0, ..., x_m \in \mathbb{N}$ such that

$$\begin{cases}
cx_0 \\
f(x_0) + cx_1, & f \in F_1 \\
f(x_0, x_1) + cx_2, & f \in F_2 \\
\vdots & \vdots \\
f(x_0, \dots, x_{m-1}) + cx_m, & f \in F_m
\end{cases} \subset C$$

V. Bergelson, John Johnson and J. Moreira, J. Comb. Theory A, 2017

Let $m, c \in \mathbb{N}$ and, for each i = 1, 2, ..., m, let F_i be a finite set of polynomials $f : \mathbb{Z}^i \to \mathbb{Z}$ such that $f(\mathbf{0}) = 0$. Then for any finite coloring $\mathbb{N} = C_1 \cup \cdots \cup C_r$ there exists a color $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_m \in \mathbb{N}$ such that

$$\begin{cases}
cx_0 \\
f(x_0) + cx_1, & f \in F_1 \\
f(x_0, x_1) + cx_2, & f \in F_2 \\
\vdots & \vdots & \vdots \\
f(x_0, \dots, x_{m-1}) + cx_m, & f \in F_m
\end{cases} \subset C$$

This is a joint extension of the polyomial van der Waerden theorem and Folkman's theorem. It contains Deuber's theorem as a special case.

V. Bergelson, John Johnson and J. Moreira, J. Comb. Theory A, 2017

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y, z \in C$ such that $x^2 + y^2 = z^2$.

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y, z \in C$ such that $x^2 + y^2 = z^2$.

▶ If one weakens the condition to $x, z \in C$ and $y \in \mathbb{N}$, the conjecture is still open. The analogue result in the ring of Gaussian integers was established by W. Sun.

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y, z \in C$ such that $x^2 + y^2 = z^2$.

- ▶ If one weakens the condition to $x, z \in C$ and $y \in \mathbb{N}$, the conjecture is still open. The analogue result in the ring of Gaussian integers was established by W. Sun.
- ▶ The conjecture has been established when r = 2, but the proof relies (heavily) on the use of a computer.

W. Sun, https://arxiv.org/abs/1405.0241

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y, z \in C$ such that $x^2 + y^2 = z^2$.

- ▶ If one weakens the condition to $x, z \in C$ and $y \in \mathbb{N}$, the conjecture is still open. The analogue result in the ring of Gaussian integers was established by W. Sun.
- ▶ The conjecture has been established when r = 2, but the proof relies (heavily) on the use of a computer.
- ► The conjecture is equivalent to ask if the configuration $\{2kmn, k(m^2 n^2), k(m^2 + n^2)\}$ is partition regular.
- ► The conjecture is equivalent to ask if any multiplicatively syndetic set contains a Pythagorean triple.

W. Sun, https://arxiv.org/abs/1405.0241

M. Heule, O. Kullmann and V. Marek, https://arxiv.org/abs/1605.00723

For any finite partition $\mathbb{N} = C_1 \cup \cdots C_r$ there exist $C \in \{C_1, \dots, C_r\}$ and...

▶ Schur: $x, y \in \mathbb{N}$ such that $\{x, y, x + y\} \subset C$.

For any finite partition $\mathbb{N} = C_1 \cup \cdots C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and...

- ▶ Schur: $x, y \in \mathbb{N}$ such that $\{x, y, x + y\} \subset C$.
- ► Corollary: $x, y \in \mathbb{N}$ such that $\{x, y, xy\} \subset C$. [Proof: restrict the coloring to $\{2^1, 2^2, 2^3, \dots\}$.]

For any finite partition $\mathbb{N} = C_1 \cup \cdots C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and...

- ▶ Schur: $x, y \in \mathbb{N}$ such that $\{x, y, x + y\} \subset C$.
- ► Corollary: $x, y \in \mathbb{N}$ such that $\{x, y, xy\} \subset C$. [Proof: restrict the coloring to $\{2^1, 2^2, 2^3, \dots\}$.]
- ▶ Hindman: $x, y, x', y' \in \mathbb{N}$ such that

$$\{x, y, x + y, x', y', x'y'\} \subset C$$

In other words, one can use the same color for both triples.

For any finite partition $\mathbb{N} = C_1 \cup \cdots C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and...

- ▶ Schur: $x, y \in \mathbb{N}$ such that $\{x, y, x + y\} \subset C$.
- ▶ Corollary: $x, y \in \mathbb{N}$ such that $\{x, y, xy\} \subset C$. [Proof: restrict the coloring to $\{2^1, 2^2, 2^3, \dots\}$.]
- ▶ Hindman: $x, y, x', y' \in \mathbb{N}$ such that

$$\{x, y, x + y, x', y', x'y'\} \subset C$$

In other words, one can use the same color for both triples.

A variation on Hindman's method gives x = x'.

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x + y, xy\} \subset C$.

An analogue in finite fields was recently established by B. Green and T. Sanders.

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x + y, xy\} \subset C$.

An analogue in finite fields was recently established by B. Green and $\mathsf{T}.$ Sanders.

Conjecture

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that $\{x + y, xy\} \subset C$.

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x + y, xy\} \subset C$.

An analogue in finite fields was recently established by B. Green and T. Sanders.

Theorem (M.)

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y \in \mathbb{N}$ such that $\{x, x + y, xy\} \subset C$.

B. Green, T. Sanders, Disc. Anal., 2016

Theorem (M.)

Let $s \in \mathbb{N}$ and, for each $i = 1, \ldots, s$, let $F_i \subset \mathbb{Z}[x_1, \ldots, x_i]$ be a finite set of polynomials such that with 0 constant term. Then for any finite coloring $\mathbb{N} = C_1 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x_0, \ldots, x_s \in \mathbb{N}$ such that for every $i, j \in \mathbb{Z}$ with $0 \le j < i \le s$ and every $f \in F_{i-j}$ we have

$$x_0 \cdots x_i + f(x_{i+1}, \dots, x_i) \in C$$

Corollary

For every finite coloring $\mathbb{N} = C_1 \cup C_2 \cup \cdots \cup C_r$ there exist $C \in \{C_1, \ldots, C_r\}$ and $x, y, z, t, w \in \mathbb{N}$ such that

$$\left\{ \begin{array}{ll} x \\ xy, & x+y \\ xyz, & x+yz, & xy+z \\ xyzt, & x+yzt, & xy+zt, & xyz+t \\ xyztw, & x+yztw, & xy+ztw, & xyz+tw & xyzt+w \end{array} \right\} \subset C$$

Corollary

Let $k \in \mathbb{N}$ and $c_1, \ldots, c_k \in \mathbb{Z} \setminus \{0\}$ be such that $c_1 + \cdots + c_k = 0$. Then for any finite coloring of \mathbb{N} there exist pairwise distinct $a_0, \ldots, a_k \in \mathbb{N}$, all of the same color, such that

$$c_1 a_1^2 + \cdots + c_k a_k^2 = a_0.$$

In particular, there exist $x, y, z \in C$ such that $x^2 - y^2 = z$.

▶ Given $E \subset \mathbb{N}$, its upper density is

has positive upper density.

$$\overline{d}(E) := \limsup_{N \to \infty} \frac{\left| E \cap \{1, \dots, N\} \right|}{N}$$

- ▶ Upper density is shift invariant: $\bar{d}(E n) = \bar{d}(E)$ for all n.
- $ightharpoonup \bar{d}(A \cup B) \leq \bar{d}(A) + \bar{d}(B).$

▶ In particular, for any finite coloring $\mathbb{N} = C_1 \cup \cdots \cup C_r$ some C_i

- \blacktriangleright (X, μ) is a probability space.
 - $T: X \to X$ preserves μ , i.e., for any (measurable) set $A \subset X$,

$$\mu(T^{-1}A) = \mu(\{x \in X : Tx \in A\}) = \mu(A).$$

- (X, μ) is a probability space.
 - ▶ $T: X \to X$ preserves μ , i.e., for any (measurable) set $A \subset X$,

$$\mu(T^{-1}A) = \mu(\lbrace x \in X : Tx \in A\rbrace) = \mu(A).$$

Example

- ▶ Let X = [0,1], $\mu =$ Lebesgue measure, $T : x \mapsto x + \alpha \mod 1$, for some $\alpha \in \mathbb{R}$.
- ▶ Let X = [0,1], $\mu =$ Lebesgue measure, $T : x \mapsto 2x \mod 1$.

- \blacktriangleright (X, μ) is a probability space.
- ▶ $T: X \to X$ preserves μ , i.e., for any (measurable) set $A \subset X$,

$$\mu(T^{-1}A) = \mu(\{x \in X : Tx \in A\}) = \mu(A).$$

Example

- ▶ Let X = [0,1], $\mu =$ Lebesgue measure, $T : x \mapsto x + \alpha \mod 1$, for some $\alpha \in \mathbb{R}$.
- ▶ Let X = [0,1], $\mu =$ Lebesgue measure, $T : x \mapsto 2x \mod 1$.

Not quite an example: $X = \mathbb{N}$, $\mu = \bar{d}$ and $T: x \mapsto x + 1$.

- \triangleright (X, μ) is a probability space.
- ▶ $T: X \rightarrow X$ preserves μ , i.e., for any (measurable) set $A \subset X$,

$$\mu(T^{-1}A) = \mu(\{x \in X : Tx \in A\}) = \mu(A).$$

Theorem (Furstenberg Correspondence Principle)

Let $E \subset \mathbb{N}$. There exists a measure preserving system (X, μ, T) and a set $A \subset X$ such that $\mu(A) = \overline{d}(E)$ and

$$\overline{d}((E-n_1)\cap(E-n_2)\cap\cdots\cap(E-n_k))\geq\mu(T^{-n_1}A\cap T^{-n_2}A\cap\cdots\cap T^{-n_k}A)$$

for any $n_1, \ldots, n_k \in \mathbb{N}$.

Szemerédi's theorem follows from the correspondence principle together with:

Theorem (Furstenberg's multiple recurrence theorem)

Let (X, μ, T) be a measure preserving system and let $A \subset X$ with $\mu(A) > 0$. Then for every k

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap T^{-2n}A\cap\cdots\cap T^{-kn}A)>0$$

Szemerédi's theorem follows from the correspondence principle together with:

Theorem (Furstenberg's multiple recurrence theorem)

Let (X, μ, T) be a measure preserving system and let $A \subset X$ with $\mu(A) > 0$. Then for every k

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap T^{-2n}A\cap\cdots\cap T^{-kn}A)>0$$

Theorem (von Neumann's Ergodic Theorem)

Let (X, μ, T) be a measure preserving system and let $A \subset X$. Then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{1}^{N}\mu(A\cap T^{-n}A)\geq\mu(A)^{2}$$

Let $E \subset \mathbb{N}$ with $\bar{d}(E) > 0$.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n^2}A)\geq \mu(A)^2$$

▶ Corresponds to $\{x, x + y^2\} \subset E$.

Let $E \subset \mathbb{N}$ with $\bar{d}(E) > 0$.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n^2}A)\geq \mu(A)^2$$

► Corresponds to
$$\{x, x + y^2\} \subset E$$
.

 $\lim_{N\to\infty}\frac{1}{\pi(N)}\sum_{T\subset N}\mu(A\cap T^{-(p-1)}A\cap\cdots\cap T^{-k(p-1)}A)>0$

▶ Corresponds to $\{x, x + (p-1), \dots, x + k(p-1)\} \subset E$.

Let $E \subset \mathbb{N}$ with $\bar{d}(E) > 0$.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n^2}A)\geq\mu(A)^2$$

► Corresponds to
$$\{x, x + y^2\} \subset E$$
.

$$\lim_{N\to\infty} \frac{1}{\pi(N)} \sum_{p\leq N} \mu(A \cap T^{-(p-1)}A \cap \dots \cap T^{-k(p-1)}A) > 0$$

$$\qquad \qquad \text{Corresponds to } \{x, x + (p-1), \dots, x + k(p-1)\} \subset E.$$

For any
$$f \in \mathbb{Z}[x]$$
 with $f(1) = 0$,
$$\lim_{N \to \infty} \frac{1}{\pi(N)} \sum_{p \le N} \mu(A \cap T^{-f(p)}A \cap \cdots \cap T^{-kf(p)}A) > 0$$
For any $f \in \mathbb{Z}[x]$ with $f(1) = 0$,

▶ Corresponds to
$$\{x, x + f(p), \dots, x + kf(p)\} \subset E$$
.

$$\{n+m,nm\}\subset C\iff m\in (C-n)\cap (C/n),$$

where

$$C - n = \{m \in \mathbb{N} : m + n \in C\} \qquad C/n = \{m \in \mathbb{N} : mn \in C\}$$

$$\{n+m,nm\}\subset C\iff m\in (C-n)\cap (C/n),$$

where

$$C - n = \{m \in \mathbb{N} : m + n \in C\} \qquad C/n = \{m \in \mathbb{N} : mn \in C\}$$

Thus we need a notion of density invariant under addition and multiplication.

$$d(C-n) = d(C)$$
 and $d(C/n) = d(C)$

$$\{n+m,nm\}\subset C\iff m\in (C-n)\cap (C/n),$$

where

$$C - n = \{ m \in \mathbb{N} : m + n \in C \} \qquad C/n = \{ m \in \mathbb{N} : mn \in C \}$$

Thus we need a notion of density invariant under addition and multiplication.

$$d(C-n)=d(C)$$
 and $d(C/n)=d(C)$

Unfortunately, no such density exists on \mathbb{N} .

The semigroup generated by addition and multiplication – the semigroup of all affine transformations $x\mapsto ax+b$ with $a,b\in\mathbb{N}$ – is not amenable.

▶ Denote by $A_{\mathbb{Q}}$ the group of all affine transformations of \mathbb{Q} :

$$\mathcal{A}_{\mathbb{Q}} := \{ x \mapsto ax + b : a, b \in \mathbb{Q}, a \neq 0 \}$$

▶ This is the semidirect product of the groups $(\mathbb{Q}, +)$ and (\mathbb{Q}^*, \times) ; hence it is solvable, and in particular amenable.

▶ Denote by $A_{\mathbb{Q}}$ the group of all affine transformations of \mathbb{Q} :

$$\mathcal{A}_{\mathbb{Q}} := \left\{ x \mapsto ax + b : a, b \in \mathbb{Q}, a \neq 0 \right\}$$

▶ This is the semidirect product of the groups $(\mathbb{Q}, +)$ and (\mathbb{Q}^*, \times) ; hence it is solvable, and in particular amenable.

Proposition

There exists an upper density $\bar{d}: \mathcal{P}(\mathbb{Q}) \to [0,1]$ which is invariant under both addition and multiplication, i.e.,

$$\bar{d}(E) = \bar{d}(E - x) = \bar{d}(E/x).$$

Equivalently, there exists a sequence $(F_N)_{N\in\mathbb{N}}$ of finite subsets of \mathbb{Q} such that for every $x \in \mathbb{Q} \setminus \{0\}$,

$$\lim_{N\to\infty} \frac{|F_N \cap (F_N + x)|}{|F_N|} = \lim_{N\to\infty} \frac{|F_N \cap (F_N x)|}{|F_N|} = 1$$

Vitaly Bergelson

Theorem (Bergelson, M.)

If $C \subset \mathbb{Q}$ has $\bar{d}(C) > 0$, then there exist

• "many" $x, y \in \mathbb{Q}$ such that $\{x + y, xy\} \subset C$;

Vitaly Bergelson

Theorem (Bergelson, M.)

If $C \subset \mathbb{Q}$ has $\bar{d}(C) > 0$, then there exist

- "many" $x, y \in \mathbb{Q}$ such that $\{x + y, xy\} \subset C$;
- ► "many" $x \in \mathbb{Q}$, $y \in \mathbb{N}$ such that $\{x + y, xy\} \subset C$.

The proofs have three ingredients:

- ▶ The existence of a doubly invariant upper density \bar{d} ,
- ▶ A modified Furstenberg Correspondence principle,
- ▶ A "mixed" ergodic theorem:

The proofs have three ingredients:

- ▶ The existence of a doubly invariant upper density \bar{d} ,
- ▶ A modified Furstenberg Correspondence principle,
- A "mixed" ergodic theorem:

Theorem (Bergelson, M.)

Let $E \subset \mathbb{Q}$ and assume that $\bar{d}(E) > 0$. Then

$$\lim_{N\to\infty}\frac{1}{|F_N|}\sum_{x\in F_N}\bar{d}\Big((E-x)\ \cap\ (E/x)\Big)>0$$

Theorem (Bergelson, M.)

Let $(U_g)_{g \in \mathcal{A}_{\mathbb{Q}}}$ be a unitary representation of $\mathcal{A}_{\mathbb{Q}}$ on a Hilbert space H with no fixed vectors. Then for every $f \in H$,

$$\lim_{N\to\infty}\frac{1}{|F_N|}\sum_{u\in F_N}M_uA_uf=0$$

Theorem (Bergelson, M.)

Let $(U_g)_{g \in \mathcal{A}_{\mathbb{Q}}}$ be a unitary representation of $\mathcal{A}_{\mathbb{Q}}$ on a Hilbert space H with no fixed vectors. Then for every $f \in H$,

$$\lim_{N\to\infty}\frac{1}{|F_N|}\sum_{u\in F_N}M_uA_uf=0$$

The key is to realize the map $g:\mathbb{Q}\to\mathcal{A}_\mathbb{Q}$ taking u to M_uA_u as a "polynomial".

Theorem (Bergelson, M.)

Let $(U_g)_{g \in \mathcal{A}_{\mathbb{Q}}}$ be a unitary representation of $\mathcal{A}_{\mathbb{Q}}$ on a Hilbert space H with no fixed vectors. Then for every $f \in H$,

$$\lim_{N\to\infty}\frac{1}{|F_N|}\sum_{u\in F_N}M_uA_uf=0$$

The key is to realize the map $g:\mathbb{Q}\to\mathcal{A}_\mathbb{Q}$ taking u to M_uA_u as a "polynomial".

Let $\Delta_h^A g(u) = g(u)^{-1} g(u+h)$ and $\Delta_h^M g(u) = g(u)^{-1} g(uh)$.

Theorem (Bergelson, M.)

Let $(U_g)_{g \in \mathcal{A}_{\mathbb{Q}}}$ be a unitary representation of $\mathcal{A}_{\mathbb{Q}}$ on a Hilbert space H with no fixed vectors. Then for every $f \in H$,

$$\lim_{N\to\infty}\frac{1}{|F_N|}\sum_{u\in F_N}M_uA_uf=0$$

The key is to realize the map $g:\mathbb{Q}\to\mathcal{A}_\mathbb{Q}$ taking u to M_uA_u as a "polynomial".

- Let $\Delta_h^A g(u) = g(u)^{-1} g(u+h)$ and $\Delta_h^M g(u) = g(u)^{-1} g(uh)$.
- ▶ We have that for all $h, \tilde{h} \in \mathbb{Q}$,

$$\Delta_h^A \Delta_{\tilde{h}}^M g$$
 is constant!

Let $\mathcal{A}_{\mathbb{N}}^{-} := \{x \mapsto ax + b : a \in \mathbb{N}, b \in \mathbb{Z}\}.$

Theorem (A topological correspondence principle)

There exists an $\mathcal{A}_{\mathbb{N}}^-$ -topological system $(X,(T_g)_{g\in\mathcal{A}_{\mathbb{N}}^-})$ with a dense set of additively minimal points, such that each map $T_g:X\to X$ is open and injective, and with the property that for any finite coloring $\mathbb{N}=C_1\cup\cdots\cup C_r$ there exists an open cover $X=U_1\cup\cdots\cup U_r$ such that for any $g_1,\ldots,g_k\in\mathcal{A}_{\mathbb{N}}^-$ and $t\in\{1,\ldots,r\}$,

$$igcap_{\ell=1}^k \mathcal{T}_{g_\ell}(U_t)
eq \emptyset \qquad \Longrightarrow \qquad \mathbb{N} \cap igcap_{\ell=1}^k g_\ell(\mathcal{C}_t)
eq \emptyset$$

Let $\mathcal{A}_{\mathbb{N}}^{-} := \{ x \mapsto ax + b : a \in \mathbb{N}, b \in \mathbb{Z} \}.$

Theorem (A topological correspondence principle)

There exists an $\mathcal{A}_{\mathbb{N}}^-$ -topological system $(X,(T_g)_{g\in\mathcal{A}_{\mathbb{N}}^-})$ with a dense set of additively minimal points, such that each map $T_g:X\to X$ is open and injective, and with the property that for any finite coloring $\mathbb{N}=C_1\cup\cdots\cup C_r$ there exists an open cover $X=U_1\cup\cdots\cup U_r$ such that for any $g_1,\ldots,g_k\in\mathcal{A}_{\mathbb{N}}^-$ and $t\in\{1,\ldots,r\}$,

$$igcap_{\ell=1}^k \mathcal{T}_{g_\ell}(U_t)
eq \emptyset \qquad \Longrightarrow \qquad \mathbb{N} \cap igcap_{\ell=1}^k g_\ell(C_t)
eq \emptyset$$

▶ In particular, if $A_y^{-1}U_t \cap M_y^{-1}U_t \neq \emptyset$, then $C_t \supset \{x+y, xy\}$ for some x, where $A_y : x \mapsto x+y$ and $M_y : x \mapsto xy$.

Theorem

For every "nice" topological system $(X,(T_g)_{g\in\mathcal{A}_\mathbb{N}^-})$ and every open cover $X=U_1\cup U_2\cup\cdots\cup U_r$ there exist $U\in\{U_1,\ldots,U_r\}$ and $y\in\mathbb{N}$ such that

$$A_y^{-1}U\cap M_y^{-1}U\neq\emptyset$$

Theorem

For every "nice" topological system $(X,(T_g)_{g\in\mathcal{A}_\mathbb{N}^-})$ and every open cover $X=U_1\cup U_2\cup\cdots\cup U_r$ there exist $U\in\{U_1,\ldots,U_r\}$ and $y\in\mathbb{N}$ such that

$$A_y^{-1}U\cap M_y^{-1}U\neq\emptyset$$

Equivalently

$$M_yA_{-y}U\cap U\neq\emptyset.$$

Theorem

For every "nice" topological system $(X,(T_g)_{g\in\mathcal{A}_\mathbb{N}^-})$ and every open cover $X=U_1\cup U_2\cup\cdots\cup U_r$ there exist $U\in\{U_1,\ldots,U_r\}$ and $y\in\mathbb{N}$ such that

$$A_y^{-1}U\cap M_y^{-1}U\neq\emptyset$$

Equivalently

$$M_y A_{-y} U \cap U \neq \emptyset$$
.

Idea

Find a sequence B_1, B_2, \ldots of non-empty sets such that

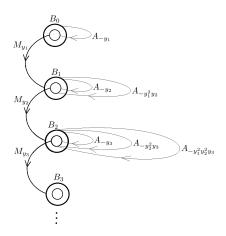
- ▶ Each B_i is contained in a single color U_j ;
- ▶ For every i < j there is $y \in \mathbb{N}$ such that $B_j \subset M_y A_{-y}(B_i)$

We want to find a sequence $\mathcal{B}_1,\mathcal{B}_2,\ldots$ of non-empty sets such that

- Each B_i is contained in a single color;
- ▶ For every i < j there is $y \in \mathbb{N}$ such that $B_j \subset M_y A_{-y}(B_i)$

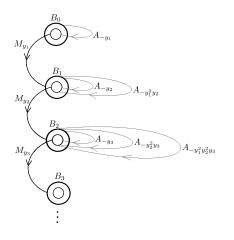
We want to find a sequence B_1, B_2, \ldots of non-empty sets such that

- ► Each *B_i* is contained in a single color;
- ▶ For every i < j there is $y \in \mathbb{N}$ such that $B_j \subset M_y A_{-y}(B_i)$



We want to find a sequence B_1, B_2, \ldots of non-empty sets such that

- ► Each *B_i* is contained in a single color;
- ▶ For every i < j there is $y \in \mathbb{N}$ such that $B_j \subset M_y A_{-y}(B_i)$



To run the iterative construction we use the following version of van der Waerden's theorem:

Theorem

Let $(X,(T_g)_{g\in\mathcal{A}_\mathbb{N}^-})$ be a "nice" topological system and $B\subset X$ open and non-empty. Then for every $k\in\mathbb{N}$ there exists $y\in\mathbb{N}$ such that

$$B \cap A_{-y} B \cap A_{-2y} B \cap \cdots \cap A_{-ky} B \neq \emptyset$$

