
Monochromatic configurations in finite colorings
of N - a dynamical approach

Joel P. Moreira
joel.moreira@northwestern.edu

Department of Mathematics
Northwestern University

November 22, 2017



Theorem (Schur)

For any finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr there exits
C ∈ {C1, . . . ,Cr} and x , y ∈ N such that {x , y , x + y} ⊂ C.

Issai Schur

Theorem (Schur, again)

For every r there exists N ∈ N such that for
every partition {1, . . . ,N} = C1 ∪ · · · ∪ Cr

there exist C ∈ {C1, . . . ,Cr} and
x , y ∈ {1, . . . ,N} such that {x , y , x + y} ⊂ C.

Schur used this to show that any large enough
finite field contains nontrivial solutions to
Fermat’s equation xn + yn = zn.

I. Schur, Jahresbericht der Deutschen Math, 1916
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Theorem (van der Waerden)

For every k ∈ N and any finite partition N = C1 ∪ · · · ∪ Cr , there
exist C ∈ {C1, . . . ,Cr} and x , y ∈ N such that

{x , x + y , x + 2y , . . . , x + ky} ⊂ C

Theorem (Brauer)

For every k ∈ N and any finite partition N = C1 ∪ · · · ∪ Cr , there
exist C ∈ {C1, . . . ,Cr} and x , y ∈ N such that

{x , y , x + y , x + 2y , . . . , x + ky} ⊂ C

B. van der Waerden, Nieuw. Arch. Wisk., 1927

A. Brauer, Sitz.ber. de Preus. Akad. Wiss., Phys.-Math. Kl., 1928
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For every k ∈ N and any finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr

there exist C ∈ {C1, . . . ,Cr} and x , y ∈ N such that

I Schur: {x , y , x + y} ⊂ C .

I van der Waerden: {x , x + y , x + 2y , . . . , x + ky} ⊂ C .

I Brauer: {x , y , x + y , x + 2y , . . . , x + ky} ⊂ C .

Problem
Let f1, . . . , fk : Nm → N. Under what conditions is it true that for
any finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr there exist
C ∈ {C1, . . . ,Cr} and x ∈ Nm such that {f1(x), . . . , fk(x)} ⊂ C?

We say that {f1(x), . . . , fk(x)} is a partition regular configuration.
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Theorem (Folkman-Sanders-Rado)

For every m ∈ N and any finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr

there exist C ∈ {C1, . . . ,Cr} and x0, . . . , xm ∈ N such that

x0

x1, x1 + x0

x2, x2 + x1, x2 + x0 x2 + x1 + x0
...

...
...

. . .

xm, xm + xm−1, . . . xm + xm−1 + · · ·+ x0


⊂ C
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Theorem (Deuber)

For every m, k ∈ N and any finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr

there exist C ∈ {C1, . . . ,Cr} and x0, . . . , xm ∈ N such that

x0,
ix0 + x1, i ∈ {0, . . . , k}

ix0 + jx1 + x2, i , j ∈ {0 . . . , k}
...

...
i0x0 + · · ·+ im−1xm−1 + xm, im−1, . . . , i0 ∈ {0, . . . , k}


⊂ C

In fact all partition regular linear configurations are contained in
Deuber’s theorem.

The complete classification of partition regular linear configurations
was first obtained by R. Rado in 1933 using a different language.

W. Deuber, Math. Z, 1973
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For every finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr there exist
C ∈ {C1, . . . ,Cr} and x , y ∈ N such that:

Theorem (Furstenberg-Sárközy)

{x , x + y2} ⊂ C.

{x , x + f (y)} ⊂ C for
every f ∈ Z[x ] with f (0) = 0.

Bergelson and Leibman extended this to

Theorem (Polynomial van der Waerden theorem)

Let f1, . . . , fk ∈ Z[x ] be polynomials such that fi (0) = 0 for all
i = 1, . . . , k. Then for any finite coloring of N = C1 ∪ · · · ∪ Cr

there exist a color C ∈ {C1, . . . ,Cr} and x , y ∈ N such that{
x , x + f1(y), x + f2(y), . . . , x + fk(y)

}
⊂ C

H. Furstenberg, J. d’Analyse Math., 1977

A. Sárközy, Acta Math. Acad. Sci. Hungar., 1978
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Theorem (Bergelson-Johnson-M.)

Let m, c ∈ N and, for each i = 1, 2, . . . ,m, let Fi be a finite set of
polynomials f : Zi → Z such that f (0) = 0. Then for any finite
coloring N = C1 ∪ · · · ∪ Cr there exists a color C ∈ {C1, . . . ,Cr}
and x0, . . . , xm ∈ N such that

cx0

f (x0) + cx1, f ∈ F1

f (x0, x1) + cx2, f ∈ F2
...

...
f (x0, . . . , xm−1) + cxm, f ∈ Fm


⊂ C

This is a joint extension of the polyomial van der Waerden theorem
and Folkman’s theorem. It contains Deuber’s theorem as a special
case.

V. Bergelson, John Johnson and J. Moreira, J. Comb. Theory A, 2017
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Conjecture

For every finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr there exist
C ∈ {C1, . . . ,Cr} and x , y , z ∈ C such that x2 + y2 = z2.

I If one weakens the condition to x , z ∈ C and y ∈ N, the
conjecture is still open. The analogue result in the ring of
Gaussian integers was established by W. Sun.

I The conjecture has been established when r = 2, but the
proof relies (heavily) on the use of a computer.

I The conjecture is equivalent to ask if the configuration{
2kmn, k(m2 − n2), k(m2 + n2)

}
is partition regular.

I The conjecture is equivalent to ask if any multiplicatively
syndetic set contains a Pythagorean triple.
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For any finite partition N = C1 ∪ · · ·Cr there exist
C ∈ {C1, . . . ,Cr} and...

I Schur: x , y ∈ N such that {x , y , x + y} ⊂ C .

I Corollary: x , y ∈ N such that {x , y , xy} ⊂ C .
[Proof: restrict the coloring to {21, 22, 23, . . . }.]

I Hindman: x , y , x ′, y ′ ∈ N such that

{x , y , x + y , x ′, y ′, x ′y ′} ⊂ C

In other words, one can use the same color for both triples.

I A variation on Hindman’s method gives x = x ′.
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Conjecture

For every finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr there exist
C ∈ {C1, . . . ,Cr} and x , y ∈ N such that {x , y , x + y , xy} ⊂ C.

An analogue in finite fields was recently established by B. Green
and T. Sanders.

B. Green, T. Sanders, Disc. Anal., 2016
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Theorem (M.)

For every finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr there exist
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Theorem (M.)

Let s ∈ N and, for each i = 1, . . . , s, let Fi ⊂ Z[x1, . . . , xi ] be a
finite set of polynomials such that with 0 constant term.
Then for any finite coloring N = C1 ∪ · · · ∪ Cr there exist
C ∈ {C1, . . . ,Cr} and x0, . . . , xs ∈ N such that for every i , j ∈ Z
with 0 ≤ j < i ≤ s and every f ∈ Fi−j we have

x0 · · · xj + f (xj+1, . . . , xi ) ∈ C

J. Moreira, Ann. of Math., 2017



Corollary

For every finite coloring N = C1 ∪ C2 ∪ · · · ∪ Cr there exist
C ∈ {C1, . . . ,Cr} and x , y , z , t,w ∈ N such that

x
xy , x + y
xyz , x + yz , xy + z
xyzt, x + yzt, xy + zt, xyz + t
xyztw , x + yztw , xy + ztw , xyz + tw xyzt + w

 ⊂ C

Corollary

Let k ∈ N and c1, . . . , ck ∈ Z \ {0} be such that c1 + · · ·+ ck = 0.
Then for any finite coloring of N there exist pairwise distinct
a0, . . . , ak ∈ N, all of the same color, such that

c1a
2
1 + · · ·+ cka

2
k = a0.

In particular, there exist x , y , z ∈ C such that x2 − y2 = z .



I Given E ⊂ N, its upper density is

d(E ) := lim sup
N→∞

∣∣E ∩ {1, . . . ,N}∣∣
N

I Upper density is shift invariant: d̄(E − n) = d̄(E ) for all n.

I d̄(A ∪ B) ≤ d̄(A) + d̄(B).

I In particular, for any finite coloring N = C1 ∪ · · · ∪ Cr some Ci

has positive upper density.



A measure preserving system is a triple (X , µ,T ), where

I (X , µ) is a probability space.

I T : X → X preserves µ, i.e., for any (measurable) set A ⊂ X ,

µ
(
T−1A

)
= µ

(
{x ∈ X : Tx ∈ A}

)
= µ(A).

Example

I Let X = [0, 1], µ = Lebesgue measure, T : x 7→ x + α mod 1,
for some α ∈ R.

I Let X = [0, 1], µ = Lebesgue measure, T : x 7→ 2x mod 1.

Not quite an example: X = N, µ = d̄ and T : x 7→ x + 1.
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A measure preserving system is a triple (X , µ,T ), where

I (X , µ) is a probability space.

I T : X → X preserves µ, i.e., for any (measurable) set A ⊂ X ,

µ
(
T−1A

)
= µ

(
{x ∈ X : Tx ∈ A}

)
= µ(A).

Theorem (Furstenberg Correspondence Principle)

Let E ⊂ N. There exists a measure preserving system (X , µ,T )
and a set A ⊂ X such that µ(A) = d(E ) and

d
(
(E−n1)∩(E−n2)∩· · ·∩(E−nk)

)
≥ µ

(
T−n1A∩T−n2A∩· · ·∩T−nkA

)
for any n1, . . . , nk ∈ N.



Szemerédi’s theorem follows from the correspondence principle
together with:

Theorem (Furstenberg’s multiple recurrence theorem)

Let (X , µ,T ) be a measure preserving system and let A ⊂ X with
µ(A) > 0. Then for every k

lim
N→∞

1

N

N∑
n=1

µ
(
A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA

)
> 0

Theorem (von Neumann’s Ergodic Theorem)

Let (X , µ,T ) be a measure preserving system and let A ⊂ X. Then

lim
N→∞

1

N

N∑
n=1

µ
(
A ∩ T−nA

)
≥ µ(A)2
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Let E ⊂ N with d̄(E ) > 0.

I lim
N→∞

1

N

N∑
n=1

µ(A ∩ T−n
2
A) ≥ µ(A)2

I Corresponds to {x , x + y2} ⊂ E .

I lim
N→∞

1

π(N)

∑
p≤N

µ(A ∩ T−(p−1)A ∩ · · · ∩ T−k(p−1)A) > 0

I Corresponds to {x , x + (p − 1), · · · , x + k(p − 1)} ⊂ E .

I For any f ∈ Z[x ] with f (1) = 0,

lim
N→∞

1

π(N)

∑
p≤N

µ(A ∩ T−f (p)A ∩ · · · ∩ T−kf (p)A) > 0

I Corresponds to {x , x + f (p), · · · , x + kf (p)} ⊂ E .
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Want to show that for any finite partition N = C1 ∪ · · · ∪ Cr , some
Ci contains a configuration {n + m, nm}.

{n + m, nm} ⊂ C ⇐⇒ m ∈ (C − n) ∩ (C/n),

where

C − n = {m ∈ N : m + n ∈ C} C/n = {m ∈ N : mn ∈ C}

Thus we need a notion of density invariant under addition and
multiplication.

d(C − n) = d(C ) and d(C/n) = d(C )

Unfortunately, no such density exists on N.

The semigroup generated by addition and multiplication – the
semigroup of all affine transformations x 7→ ax + b with a, b ∈ N –
is not amenable.
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I Denote by AQ the group of all affine transformations of Q:

AQ :=
{
x 7→ ax + b : a, b ∈ Q, a 6= 0

}
I This is the semidirect product of the groups (Q,+) and

(Q∗,×); hence it is solvable, and in particular amenable.

Proposition

There exists an upper density d̄ : P(Q)→ [0, 1] which is invariant
under both addition and multiplication, i.e.,

d̄(E ) = d̄(E − x) = d̄(E/x).

Equivalently, there exists a sequence (FN)N∈N of finite subsets of
Q such that for every x ∈ Q \ {0},

lim
N→∞

|FN ∩ (FN + x)|
|FN |

= lim
N→∞

|FN ∩ (FNx)|
|FN |

= 1
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Vitaly Bergelson

Theorem (Bergelson, M.)

If C ⊂ Q has d̄(C ) > 0, then there exist

I “many” x , y ∈ Q such that
{x + y , xy} ⊂ C;

I “many” x ∈ Q, y ∈ N such that
{x + y , xy} ⊂ C.

V. Bergelson, M., Erg. Theo. Dyn. Syst., 2016

V. Bergelson, M., Erg. Theo. Dyn. Syst., 2018
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The proofs have three ingredients:

I The existence of a doubly invariant upper density d̄ ,

I A modified Furstenberg Correspondence principle,

I A “mixed” ergodic theorem:

Theorem (Bergelson, M.)

Let E ⊂ Q and assume that d̄(E ) > 0. Then

lim
N→∞

1

|FN |
∑
x∈FN

d̄
(

(E − x) ∩ (E/x)
)
> 0
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For u ∈ Q, let Mu : x 7→ ux and Au : x 7→ u + x .

Theorem (Bergelson, M.)

Let (Ug )g∈AQ be a unitary representation of AQ on a Hilbert space
H with no fixed vectors. Then for every f ∈ H,

lim
N→∞

1

|FN |
∑
u∈FN

MuAuf = 0

The key is to realize the map g : Q→ AQ taking u to MuAu as a
“polynomial”.

I Let ∆A
h g(u) = g(u)−1g(u + h) and ∆M

h g(u) = g(u)−1g(uh).

I We have that for all h, h̃ ∈ Q,

∆A
h ∆M

h̃
g is constant!
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Let A−N := {x 7→ ax + b : a ∈ N, b ∈ Z}.

Theorem (A topological correspondence principle)

There exists an A−N -topological system (X , (Tg )g∈A−
N

) with a

dense set of additively minimal points, such that each map
Tg : X → X is open and injective, and with the property that for
any finite coloring N = C1 ∪ · · · ∪ Cr there exists an open cover
X = U1 ∪ · · · ∪ Ur such that for any g1, . . . , gk ∈ A−N and
t ∈ {1, . . . , r},

k⋂
`=1

Tg`(Ut) 6= ∅ =⇒ N ∩
k⋂

`=1

g`(Ct) 6= ∅

I In particular, if A−1
y Ut ∩M−1

y Ut 6= ∅, then Ct ⊃ {x + y , xy}
for some x , where Ay : x 7→ x + y and My : x 7→ xy .
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Theorem
For every “nice” topological system (X , (Tg )g∈A−

N
) and every open

cover X = U1 ∪ U2 ∪ · · · ∪ Ur there exist U ∈ {U1, . . . ,Ur} and
y ∈ N such that

A−1
y U ∩M−1

y U 6= ∅

Equivalently
MyA−yU ∩ U 6= ∅.

Idea
Find a sequence B1,B2, . . . of non-empty sets such that

I Each Bi is contained in a single color Uj ;

I For every i < j there is y ∈ N such that Bj ⊂ MyA−y (Bi )
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We want to find a sequence B1,B2, . . . of non-empty sets such
that

I Each Bi is contained in a single color;

I For every i < j there is y ∈ N such that Bj ⊂ MyA−y (Bi )

To run the iterative construction
we use the following version of
van der Waerden’s theorem:

Theorem
Let (X , (Tg )g∈A−

N
) be a “nice”

topological system and B ⊂ X
open and non-empty. Then for
every k ∈ N there exists y ∈ N
such that

B∩A−yB∩A−2yB∩· · ·∩A−kyB 6= ∅
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Questions?


