Monochromatic configurations in finite colorings of \mathbb{N}

Is it possible to color the natural numbers with finitely many colors, so that whenever x and y are of the same color, their sum $x + y$ has a different color? A 1916 theorem of I. Schur tells us that the answer is no. In other words, for any finite coloring of \mathbb{N}, there exist x and y such that the triple $\{x, y, x + y\}$ is monochromatic (i.e. has all terms have the same color). A similar result holds if one replaces the sum $x + y$ with the product xy, however, it is still unknown whether one can finitely color the natural numbers in a way that no quadruple $\{x, y, x + y, xy\}$ is monochromatic! In this talk I present a recent partial solution to this problem, showing that any finite coloring of the natural numbers yields a monochromatic triple $\{x, x + y, xy\}$.