Approximate Ramsey theory

Dana Bartošová

Carnegie Mellon University

Ultrafilters, Ramsey theory and dynamics
Université de Lyon
November 23, 2017
Ramsey’s theorem

For every $k \leq m$, $r \geq 2$, and every colouring of k-element subsets of \mathbb{N} with r-many colours there is an infinite subset X of \mathbb{N} such that all k-element subsets of X have the same colour.
Ramsey’s theorem

For every $k \leq m$, $r \geq 2$, and every colouring of k-element subsets of \mathbb{N} with r-many colours there is an infinite subset X of \mathbb{N} such that all k-element subsets of X have the same colour.

Finite Ramsey’s theorem

For every $k \leq m$ and $r \geq 2$, there exists n such that for every colouring of k-element subsets of n with r-many colours there is a subset X of n of size m such that all k-element subsets of X have the same colour.
THE CLASS OF FINITE LINEAR ORDERS IS RAMSEY

Given A and B finite linear orders, $|A| \leq |B|$ and $r \geq 2$, there exists a finite linear order C such that whenever we colour copies of A in C by r colours, there is a copy B' of B in C such that all copies of A in B' have the same colour.
THE CLASS OF FINITE LINEAR ORDERS IS RAMSEY
Given A and B finite linear orders, $|A| \leq |B|$ and $r \geq 2$, there exists a finite linear order C such that whenever we colour copies of A in C by r colours, there is a copy B' of B in C such that all copies of A in B' have the same colour.

EQUIVALENTLY (Pestov, 1998)
The group of order preserving bijections of rationals, $\text{Aut}(\mathbb{Q}, <)$ is extremely amenable.
THE CLASS OF FINITE LINEAR ORDERS IS RAMSEY
Given A and B finite linear orders, $|A| \leq |B|$ and $r \geq 2$, there exists a finite linear order C such that whenever we colour copies of A in C by r colours, there is a copy B' of B in C such that all copies of A in B' have the same colour.

EQUIVALENTLY (Pestov, 1998)
The group of order preserving bijections of rationals, $\text{Aut}(\mathbb{Q}, <)$ is extremely amenable.

A topological group G is extremely amenable if it has a fixed point under any continuous action on a compact Hausdorff space. Equivalently, every minimal G-flow is a singleton.
Proof

Topology on \(G = \text{Aut}(\mathbb{Q}, <) \) is given by stabilizers of finite suborders

\[G_A = \{ g \in G : ga = a \ \forall a \in A \} \]
Proof

Topology on $G = \text{Aut}(\mathbb{Q}, <)$ is given by stabilizers of finite suborders

$$G_A = \{g \in G : ga = a \ \forall a \in A\}$$

and therefore

$$G/G_A \longleftrightarrow \text{copies of } A \text{ in } \mathbb{Q}.$$
Proof

Topology on $G = \text{Aut}(\mathbb{Q}, <)$ is given by stabilizers of finite suborders

$$G_A = \{ g \in G : ga = a \ \forall a \in A \}$$

and therefore

$$G/G_A \longleftrightarrow \text{copies of } A \text{ in } \mathbb{Q}.$$

Finite linear orders are a Ramsey class \longleftrightarrow every partition

$G = \bigcup_{i=1}^r G_A K_i$ has a thick part \longleftrightarrow there are no disjoint topologically syndetic sets.
A first order structure \mathcal{A} is ultrahomogeneous \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.
A first order structure \mathcal{A} is ultrahomogeneous \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.

We like ω-homogeneous structures

Every automorphism group is a group of automorphisms of an ultrahomogeneous structure.
A first order structure \mathcal{A} is **ultrahomogeneous** \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.

We like ω-homogeneous structures

Every automorphism group is a group of automorphisms of an ultrahomogeneous structure.

$G = \text{Aut}(\mathcal{A})$ with the topology of pointwise convergence
A first order structure \mathcal{A} is **ultrahomogeneous** \iff every partial finite isomorphism can be extended to an automorphism of \mathcal{A}.

We like ω-homogeneous structures

Every automorphism group is a group of automorphisms of an ultrahomogeneous structure.

$G = \text{Aut}(\mathcal{A})$ with the topology of pointwise convergence

Theorem (Kechris, Pestov, and Todorčević)

G is extremely amenable iff finitely generated substructures of \mathcal{A} form a rigid Ramsey class.
Examples

RAMSEY CLASSES

- finite linear orders (Ramsey);
- finite linearly ordered graphs (Nešetřil and Rödl);
- finite linearly ordered metric spaces (Nešetřil);
- finite Boolean algebras (Graham and Rothschild).
Examples

RAMSEY CLASSES
- finite linear orders (Ramsey);
- finite linearly ordered graphs (Nešetřil and Rödl);
- finite linearly ordered metric spaces (Nešetřil);
- finite Boolean algebras (Graham and Rothschild).

EXTREMELY AMENABLE GROUPS
1. \(\text{Aut}(\mathbb{Q}, <)\) (Pestov);
2. \(\text{Aut}(\mathcal{R}, <)\) = group of automorphisms of the random ordered graph (KPT);
3. \(\text{Iso}(\mathbb{U}, d)\) = group of isometries of the Urysohn space (Pestov);
4. \(U(l_2)\) = group of unitaries of the separable Hilbert space (Gromov + Milman);
5. \(\text{LIso}(\mathcal{G})\) = group of linear isometries of the Gurarij space (B + López-Abad + Mbombo).
Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, Iso(M) is extremely amenable \iff finitely-generated substructures satisfy the approximate Ramsey property (ARP).
Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, $\text{Iso}(M)$ is extremely amenable \iff finitely-generated substructures satisfy the approximate Ramsey property (ARP).

FIRST EXAMPLE (Pestov)
$\text{Iso}(U,d)$ is e.a. \iff finite metric spaces satisfy ARP.

PREFIRST EXAMPLE (Gromov + Milman)
$U(\ell^2)$ is e.a. \iff finite dimensional inner spaces satisfy ARP.

FIRST COMBINATORIAL PROOF (B + LA + M)
$\text{Iso}(l(G))$ is e.a. \iff finite dimensional Banach spaces satisfy ARP.
Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, $\text{Iso}(M)$ is extremely amenable \iff finitely-generated substructures satisfy the approximate Ramsey property (ARP).

FIRST EXAMPLE (Pestov)
$\text{Iso}(U, d)$ is e.a. \iff finite metric spaces satisfy ARP.

PREFIRST EXAMPLE (Gromov + Milman)
$U(l_2)$ is e.a. \iff finite dimensional inner spaces satisfy ARP.

FIRST COMBINATORIAL PROOF (B + LA + M)
$\text{Iso}_l(G)$ is e.a. \iff finite dimensional Banach spaces satisfy ARP.
(1) separable Banach space
(1) separable Banach space
(2) contains isometric copy of every finite dimensional Banach space

LUSKY Conditions (1),(2),(3) uniquely define G up to a linear isometry.

Kubiś-Solecki; Henson

Simple proof - metric Fraïssé theory.

Dana Bartošová

Approximate Ramsey theory
(1) separable Banach space
(2) contains isometric copy of every finite dimensional Banach space
(3) for every E finite dimensional, $i : E \hookrightarrow G$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f : G \rightarrow G$

$$\|i - f \upharpoonright E\| < \varepsilon$$
(1) separable Banach space
(2) contains isometric copy of every finite dimensional Banach space
(3) for every E finite dimensional, $i : E \hookrightarrow G$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f : G \longrightarrow G$

$$\|i - f \upharpoonright E\| < \varepsilon$$

LUSKY
Conditions (1),(2),(3) uniquely define G up to a linear isometry.
(1) separable Banach space
(2) contains isometric copy of every finite dimensional Banach space
(3) for every E finite dimensional, $i : E \hookrightarrow \mathcal{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f : \mathcal{G} \rightarrow \mathcal{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$

LUSKY
Conditions (1),(2),(3) uniquely define \mathcal{G} up to a linear isometry.

KUBIŠ-SOLECKI; HENSON
Simple proof - metric Fraïssé theory.
Group of linear isometries

\[\text{Iso}_l(G) + \text{point-wise convergence topology} = \text{Polish group} \]
Group of linear isometries

\[\text{Iso}_l(\mathbb{G}) + \text{point-wise convergence topology} = \text{Polish group} \]

BASIS
Group of linear isometries

\[\text{Iso}_l(G) + \text{point-wise convergence topology} = \text{Polish group} \]

BASIS

- \(E \) - finite dimensional subspace of \(G \)
Group of linear isometries

Iso$_l$(G) + point-wise convergence topology = Polish group

BASIS

- E - finite dimensional subspace of G
- $\varepsilon > 0$
Group of linear isometries

$\text{Iso}_l(\mathbb{G}) + \text{point-wise convergence topology} = \text{Polish group}$

BASIS

- E - finite dimensional subspace of \mathbb{G}
- $\varepsilon > 0$

$$V_\varepsilon(E) = \{ g \in \text{Iso}(\mathbb{G}) : \| g \upharpoonright E - \text{id} \upharpoonright E \| < \varepsilon \}$$
Group of linear isometries

$\text{Iso}_l(G) + \text{point-wise convergence topology} = \text{Polish group}$

BASIS

- E - finite dimensional subspace of G
- $\varepsilon > 0$

$$V_\varepsilon(E) = \{g \in \text{Iso}(G) : \|g \restriction E - \text{id} \restriction E\| < \varepsilon\}$$

BEN YAACOV

$\text{Iso}_l(G)$ is a universal Polish group.
Group of linear isometries

\[\text{Iso}_l(\mathbb{G}) + \text{point-wise convergence topology} = \text{Polish group} \]

BASIS

- \(E \) - finite dimensional subspace of \(\mathbb{G} \)
- \(\varepsilon > 0 \)

\[V_\varepsilon(E) = \{ g \in \text{Iso}(\mathbb{G}) : \| g \upharpoonright E - \text{id} \upharpoonright E \| < \varepsilon \} \]

BEN YAACOV

\(\text{Iso}_l(\mathbb{G}) \) is a universal Polish group.

Katětov construction
Approximate Ramsey property for l^n_{∞}'s

Theorem (B+LA+M)

Let d be the number of colours $\varepsilon > 0$.

Then for every colouring $c : \text{Emb}(l^d_{\infty}, l^n_{\infty}) \to \{0, 1, \ldots, r - 1\}$, there is an $i \in \text{Emb}(l^d_{\infty}, l^n_{\infty})$ and $\alpha < r$ such that $i \circ \text{Emb}(l^d_{\infty}, l^n_{\infty}) \subset (c - 1)(\alpha)$.

Theorem (B+LA+M)

$\text{Iso}(G)$ is extremely amenable.
Approximate Ramsey property for l^n's

Theorem (B+LA+M)

\[d \leq m \]
Approximate Ramsey property for l^n_∞’s

Theorem (B+LA+M)

\[d \leq m \]

\[r - \text{number of colours} \]
Theorem (B+LA+M)

- $d \leq m$
- r - *number of colours*
- $\varepsilon > 0$
Theorem (B+LA+M)

\[d \leq m \]

\[r \ - \ number \ of \ colours \]

\[\varepsilon > 0 \]

\[\exists n \]
Approximate Ramsey property for l^n_∞’s

Theorem (B+LA+M)

\[d \leq m \]

\[r \ - \ number \ of \ colours \]

\[\varepsilon > 0 \]

\[\exists n \]

\[\text{for every colouring } c : \text{Emb}(l^d_\infty, l^n_\infty) \rightarrow \{0, 1, \ldots, r - 1\} \]
Theorem (B+LA+M)

\[d \leq m \]

\[r \text{ - number of colours} \]

\[\varepsilon > 0 \]

\[\exists n \]

for every colouring \(c : \text{Emb}(l^d_{\infty}, l^n_{\infty}) \rightarrow \{0, 1, \ldots, r - 1\} \)

there is \(i \in \text{Emb}(l^m_{\infty}, l^n_{\infty}) \) and \(\alpha < r \)
Approximate Ramsey property for l^n_∞'s

Theorem (B+LA+M)

$d \leq m$

r - number of colours

$\varepsilon > 0$

$\exists n$

for every colouring $c : \text{Emb}(l^d_\infty, l^n_\infty) \rightarrow \{0, 1, \ldots, r - 1\}$

there is $i \in \text{Emb}(l^m_\infty, l^n_\infty)$ and $\alpha < r$

$$i \circ \text{Emb}(l^d_\infty, l^m_\infty) \subset (c^{-1}(\alpha))_\varepsilon$$
Theorem (B+LA+M)

\[d \leq m \]

- \(r \) - number of colours
- \(\varepsilon > 0 \)
- \(\exists n \)

\textit{for every colouring} \(c : \text{Emb}(l^d_\infty, l^n_\infty) \rightarrow \{0, 1, \ldots, r - 1\} \)

\textit{there is} \(i \in \text{Emb}(l^m_\infty, l^n_\infty) \text{ and } \alpha < r \)

\[i \circ \text{Emb}(l^d_\infty, l^m_\infty) \subset (c^{-1}(\alpha))_\varepsilon \]

Theorem (B+LA+M)

\(\text{Iso}_l(\mathbb{G}) \) \textit{is extremely amenable.}
\[d = 1: \text{proof of Gowers' result on oscillation stability of the unit sphere in } c_0. \]
$d = 1$: proof of Gowers’ result on oscillation stability of the unit sphere in c_0.

In particular, multidimensional Hindman’s theorem (finite sets version).
About the proof

\(d = 1 \): proof of Gowers’ result on oscillation stability of the unit sphere in \(c_0 \).

In particular, multidimensional Hindman’s theorem (finite sets version).

GENERAL CASE
Discretize and use dual Ramsey theorem of Graham and Rothschild.
Further structures

P – Poulsen simplex

p – extreme point in P

$\text{AH}(P, p)$ – group of affine homeomorphisms of P fixing p
Further structures

P – Poulsen simplex

p – extreme point in p

$\text{AH}(P, p)$ – group of affine homeomorphisms of P fixing p

Theorem (B+LA+M)

$\text{AH}(P, p)$ is e.a. \iff finite dimensional simplexes with a distinguished extreme point satisfy ARP

Continuum is a compact connected space.

L – Lelek fan (\equiv unique subcontinuum of the Cantor fan with dense set of endpoints)

$<$ – total order on endpoints of type ($\mathbb{Q}, <$)

Theorem (B+Kwiatkowska)

$\text{Homeo}(L, <)$ is e.a. \iff generalization of Gowers’ Hindman’s theorem.
Further structures

P – Poulsen simplex
p – extreme point in P
$\text{AH}(P,p)$ – group of affine homeomorphisms of P fixing p

Theorem (B+LA+M)

$\text{AH}(P,p)$ is e.a. \iff finite dimensional simplexes with a distinguished extreme point satisfy ARP

Continuum is a compact connected space.
Further structures

P – Poulsen simplex
p – extreme point in p
$\text{AH}(P, p)$ – group of affine homeomorphisms of P fixing p

Theorem (B+LA+M)

$\text{AH}(P, p)$ is e.a. \iff finite dimensional simplexes with a distinguished extreme point satisfy ARP

Continuum is a compact connected space.
L – Lelek fan (\equiv unique subcontinuum of the Cantor fan with dense set of endpoints)
$<$ – total order on endpoints of type $(\mathbb{Q}, <)$
Further structures

P – Poulsen simplex
p – extreme point in p
$\text{AH}(P, p)$ – group of affine homeomorphisms of P fixing p

Theorem (B+LA+M)

$\text{AH}(P, p)$ is e.a. \iff finite dimensional simplexes with a distinguished extreme point satisfy ARP

Continuum is a compact connected space.
L – Lelek fan (\equiv unique subcontinuum of the Cantor fan with dense set of endpoints)
$<$ – total order on endpoints of type $(\mathbb{Q}, <)$

Theorem (B+Kwiatkowska)

$\text{Homeo}(L, <)$ is e.a. \iff generalization of Gowers’ Hindman’s theorem.
Big problem

\[
P - \text{pseudoarc}
\]

\[
p \in P
\]
Big problem

P – pseudoarc

$p \in P$

Is $\text{Homeo}(P, p)$ e.a.?
THANK YOU!