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Szeméredi’s Theorem

Theorem (Szeméredi, 1975)
Let k be a positive integer and δ be a positive real. Then there exists
some positive integer n0 such that for every n > n0 we have that every
subset A of the set {1, ..., n} of cardinality at least δn contains an
arithmetic progression of length k.
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The Hales-Jewett Theorem

To state the Hales-Jewett Theorem we need to introduce some
notation. Let k be a positive integer and n be a non-negative integer.

By [k]n we denote the set of all sequences (a0, ..., an−1) of length
n with elements from [k].

We will refer to the elements of [k]n as constant words of length
n over k.
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The Hales-Jewett Theorem

The set [3]4 is
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The Hales–Jewett Theorem

Moreover, let v be a symbol not belonging to [k] = {1, ..., k}.
A variable word over k is a finite sequence w(v) in [k] ∪ {v} such
that v occurs at least once.

For a variable word w(v) and a ∈ [k] by w(a) we denote the
constant word over k resulting by substituting every occurrence
of v by a.

A combinatorial line is a set of the form {w(a) : a ∈ [k]}, where
w(v) is a variable word over k.

Given a variable word w(v) = (α0, ..., αn−1), the set{
i ∈ {0, ..., n− 1} : wi = v

}
is called the wildcard set of w(v).
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The Hales-Jewett Theorem

For example assume that k = 3 and n = 4. Also let w(v) = (1, v, v, 2).
Then the corresponding combinatorial line is the set

{(1, 1, 1, 2), (1, 2, 2, 2), (1, 3, 3, 2)}

The wildcard set is {1, 2}.
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The Hales-Jewett Theorem

Theorem (Hales and Jewett, 1963)
Let k, r be positive integers. Then there exists an integer n0 such that
for every n > n0 and every r-coloring of [k]n there exists a variable
word w(v) of length n such that the set {w(a) : a ∈ [k]} is
monochromatic.

The least such n0 is denoted by HJ(k, r).

The best known upper bounds for the numbers HJ(k, r) are
primitive recursive and are due to Shelah (1988).

Konstantinos Tyros Results in Density Ramsey Theory.



The Hales-Jewett Theorem

Theorem (Hales and Jewett, 1963)
Let k, r be positive integers. Then there exists an integer n0 such that
for every n > n0 and every r-coloring of [k]n there exists a variable
word w(v) of length n such that the set {w(a) : a ∈ [k]} is
monochromatic.

The least such n0 is denoted by HJ(k, r).

The best known upper bounds for the numbers HJ(k, r) are
primitive recursive and are due to Shelah (1988).

Konstantinos Tyros Results in Density Ramsey Theory.



The Hales-Jewett Theorem

Theorem (Hales and Jewett, 1963)
Let k, r be positive integers. Then there exists an integer n0 such that
for every n > n0 and every r-coloring of [k]n there exists a variable
word w(v) of length n such that the set {w(a) : a ∈ [k]} is
monochromatic.

The least such n0 is denoted by HJ(k, r).

The best known upper bounds for the numbers HJ(k, r) are
primitive recursive and are due to Shelah (1988).

Konstantinos Tyros Results in Density Ramsey Theory.



The Graham–Rothschild Theorem

An m-variable word w(v0, ..., vm−1) is a sequence in
[k] ∪ {v0, ..., vm−1} such that each vi appears at least once and their
appearances are in block position.
An m-dimensional subspace of [k]n is a subset of [k]n of the form
{w(a0, ..., am−1) : a0, ..., am−1 ∈ [k]}, where w(v0, ..., vm−1) is an
m-variable word of length n.

Theorem (Graham–Rothschild Theorem)
Let k, d,m, r be positive integers with d 6 m. Then there exists a
positive integer n0 such that for every n > n0 and every r-coloring of
the d-dimensional subspaces of [k]n there exists an m-dimensional
subspace S of [k]n such that the set of d-dimensional subspaces of S is
monochromatic.
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The Density Hales-Jewett Theorem

Theorem (Furstenberg and Katznelson, 1991)
Let k be positive integer and δ be a real with 0 < δ 6 1. Then there
exists an integer n0 such that for every n > n0 and every subset A of
[k]n of uniform density at least δ, that is |A|kn > δ, there exists a
combinatorial line contained in A.

The least such n0 is denoted by DHJ(k, δ).
Furstenberg and Katznelson proved it using Ergodic Theory.
In 2011, Austin gave another proof using Ergodic theoretic
techniques.
A combinatorial proof is provided by the Polymath paper (2012),
giving upper bounds for the numbers DHJ(k, δ) which have an
Ackermann type dependence on k.
Tao presents another proof on his blog.
In a joint work with Dodos and Kanellopoulos a shorter
combinatorial proof is given.
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The Carlson-Simpson Theorem

Let k,m be a positive integers.

By [k]<ω we denote the set of all sequences.

A Carlson-Simpson tree of dimension m is a set of the form

{c}∪{caw0(a0)a...awn(an) : n ∈ {0, ...,m−1} and a0, ..., an ∈ [k]}

where c is a constant word over k and w0(v), ...,wm−1(v) are left
variable words.
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The Carlson-Simpson Theorem

{c} ∪ {caw0(a0)a...awn(an) : n ∈ {0, ...,m− 1} and a0, ..., an ∈ [k]}

v
v

v
v
v

c

w0(v)

w1(v)
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The Carlson-Simpson Theorem

Theorem (Carlson and Simpson, 1984)

Let k be a positive integer. Then for every finite coloring of [k]<ω, i.e.
the set of the words over k, there exist a constant word c and a
sequence

(
wq(v)

)
q of left variable words such that the set

{c} ∪ {caw0(a0)a...awn(an) : n ∈ ω and a0, ..., an ∈ [k]}

is monochromatic.

The Carlson-Simpson Theorem belongs to the circle of results
that provide information on the structure of the wildcard set of
the variable word obtained by the Hales-Jewett Theorem.
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The Density Carlson-Simpson Theorem

Theorem (Dodos, Kanellopoulos and T.)

Let k be a positive integer. Then every subset A of [k]<ω satisfying

lim sup
n→∞

|A ∩ [k]n|
|[k]n|

> 0

contains an infinite Carlson-Simpson tree.

The above is consequence of the following.
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The Density Carlson-Simpson Theorem

Theorem (Dodos, Kanellopoulos and T.)
Let k,m be a positive integer and δ be a real with 0 < δ 6 1. Then
there exists an integer n0 with the following property. If A is a subset
of [k]<ω such that for at least n0 many n’s

|A ∩ [k]n|
|[k]n|

> δ,

then A contains a Carson–Simpson tree of dimension m.
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The Density Hales-Jewett Theorem

Theorem (Density Hales–Jewett Theorem)
Let k be positive integer and δ be a real with 0 < δ 6 1. Then there
exists an integer n0 such that for every n > n0 and every subset A of
[k]n of uniform density at least δ, that is |A|kn > δ, there exists a variable
word w(v) of length n such that the set {w(a) : a ∈ [k]} is subset of A.
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The Density Hales-Jewett Theorem, Probabilistic version

Theorem
Let k be positive integer and δ be a real with 0 < δ 6 1. Then there
exists an integer n = n(k, δ) and a positive real θ = θ(k, δ) with the
following property. For every family of measurable events (At)t∈[k]n in
a probability space (Ω,Σ, µ) such that µ(At) > δ for all t ∈ [k]n,
there exists a variable word w(v) of length n such that

µ
( ⋂

a∈[k]

Aw(a)

)
> θ
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A regularity technique

Let I be a non-empty interval of {0, ..., n− 1}. We set
Ic = {0, ..., n− 1} \ I. By [k]I (resp. [k]I

c
) we denote the set of all

maps from I (resp. [k]I
c
) into [k]. Then [k]n ≡ [k]I × [k]I

c
sending each

pair (x, y) to x ∪ y.
If A is a subset of [k]n and x ∈ [k]I , we set

Ax = {y ∈ [k]I
c

: x ∪ y ∈ A}.

Lemma
Let k,m be positive integers and ε a positive real. Then there exists an
n0 such that for every n > n0 and every subset A of [k]n, there exists
an interval I of {0, ..., n− 1} of length m such that

|dens(A)− dens(Ax)| < ε

for all x in [k]I .
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A concentration inequality

Let n be a positive integer and let (Ω1,F1,P1), . . . , (Ωn,Fn,Pn) be
standard Borel probability spaces. By (Ω,F ,P) we denote their
product. More generally, for every nonempty subset I of {1, . . . , n}
by (ΩI,FI,PI) we denote the product of the spaces
{(Ωi,Fi,Pi) : i ∈ I}. In particular, we have

Ω =

n∏
i=1

Ωi and ΩI =
∏
i∈I

Ωi.

Now let f : Ω→ R and I ⊆ {1, . . . , n} such that I and Ic are
nonempty. For every x ∈ ΩI let fx : ΩIc → R be defined by the rule
fx(y) = f

(
x ∪ y

)
.
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A concentration inequality

Theorem (Dodos, Kanellopoulos and T.)
Let 0 < ε 6 1 and 1 < p 6 2 and set

c(ε, p) =
1
4
ε

2(p+1)
p (p− 1).

Also let n be a positive integer with n > c(ε, p)−1 and let (Ω,F ,P)
be the product of the probability spaces
(Ω1,F1,P1), . . . , (Ωn,Fn,Pn). Then for every f ∈ Lp(Ω,F ,P) with
‖f‖Lp 6 1 there exists an interval J of {1, . . . , n} with Jc 6= ∅ and

|J| > c(p, ε)n

such that for every I ⊆ J we have

PI
(
{x ∈ ΩI : |E(fx)− E(f )| 6 ε}

)
> 1− ε.
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The Density Hales-Jewett Theorem, Probabilistic version

Theorem
Let k be positive integer and δ be a real with 0 < δ 6 1. Then there
exist an integer n0 = n0(k, δ) and a positive real θ = θ(k, δ) with the
following property. For every n > n0 and every family of measurable
events (At)t∈[k]n in a probability space (Ω,Σ, µ) such that µ(At) > δ
for all t ∈ [k]n, there exists a variable word w(v) of length n such that

µ
( ⋂

a∈[k]

Aw(a)

)
> θ
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Probabilistic versions

Theorem
Let k be positive integer and δ be a real with 0 < δ 6 1. Then for
each positive integer m there exist an integer nm = n(k, δ,m) and a
positive real θm = θ(k, δ,m) with the following property. For every
m > 1 and every family of measurable events (At)t∈[k]nm in a
probability space (Ω,Σ, µ) such that µ(At) > δ for all t ∈ [k]nm , there
exists an m-dimensional subspace S of [k]nm such that

µ
(⋂

t∈S

At

)
> θm.
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Probabilistic versions

Theorem (Dodos, Kanellopoulos and T.)
Let k > 2 and 0 < δ 6 1. Then for every m > 1 there exist a positive
integer nm = n(k, δ,m) a positive real θm = θ(k, δ,m) having the
following property. For every m > 1 and every family {At : t ∈ [k]nm}
of measurable events in a probability space (Ω,Σ, µ) such that
µ(At) > δ for all t ∈ [k]nm ,
there exists an m-dimensional subspace S of [k]nm such that for every
finite subset F of S we have that

µ
(⋂

t∈F

At

)
> θ|F|.

The proof of the above theorem requires a refinement of a
partition result due to Furstenberg and Katznelson.
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