Monochromatic configurations in finite colorings of \mathbb{N} - a dynamical approach

Joel P. Moreira
joel.moreira@northwestern.edu

Department of Mathematics
Northwestern University

November 22, 2017

Theorem (Schur)
For any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exits $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x+y\} \subset C$.

1.5

Issai Schur

Theorem (Schur)

For any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exits $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x+y\} \subset C$.

Theorem (Schur, again)
For every r there exists $N \in \mathbb{N}$ such that for every partition $\{1, \ldots, N\}=C_{1} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in\{1, \ldots, N\}$ such that $\{x, y, x+y\} \subset C$.

Issai Schur

Theorem (Schur)

For any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exits $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x+y\} \subset C$.

1 g

Theorem (Schur, again)
For every r there exists $N \in \mathbb{N}$ such that for every partition $\{1, \ldots, N\}=C_{1} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in\{1, \ldots, N\}$ such that $\{x, y, x+y\} \subset C$.

Schur used this to show that any large enough finite field contains nontrivial solutions to Fermat's equation $x^{n}+y^{n}=z^{n}$.

Issai Schur

Theorem (van der Waerden)
For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

$$
\{x, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

B. van der Waerden, Nieuw. Arch. Wisk., 1927
A. Brauer, Sitz.ber. de Preus. Akad. Wiss., Phys.-Math. KI., 1928

Theorem (van der Waerden)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

$$
\{x, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

Theorem (Brauer)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

$$
\{x, y, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

B. van der Waerden, Nieuw. Arch. Wisk., 1927
A. Brauer, Sitz.ber. de Preus. Akad. Wiss., Phys.-Math. KI., 1928

Theorem (van der Waerden)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

$$
\{x, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

Theorem (Brauer)

For every $k \in \mathbb{N}$ and any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

$$
\{x, y, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

B. van der Waerden, Nieuw. Arch. Wisk., 1927
A. Brauer, Sitz.ber. de Preus. Akad. Wiss., Phys.-Math. KI., 1928

For every $k \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

- Schur:

$$
\{x, y, x+y\} \subset C
$$

- van der Waerden:

$$
\{x, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

- Brauer:

$$
\{x, y, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

For every $k \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

- Schur:

$$
\{x, y, x+y\} \subset C
$$

- van der Waerden:

$$
\{x, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

- Brauer:

$$
\{x, y, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

Problem

Let $f_{1}, \ldots, f_{k}: \mathbb{N}^{m} \rightarrow \mathbb{N}$. Under what conditions is it true that for any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist
$C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $\mathbf{x} \in \mathbb{N}^{m}$ such that $\left\{f_{1}(\mathbf{x}), \ldots, f_{k}(\mathbf{x})\right\} \subset C$?

For every $k \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

- Schur:

$$
\{x, y, x+y\} \subset C
$$

- van der Waerden:

$$
\{x, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

- Brauer:

$$
\{x, y, x+y, x+2 y, \ldots, x+k y\} \subset C
$$

Problem

Let $f_{1}, \ldots, f_{k}: \mathbb{N}^{m} \rightarrow \mathbb{N}$. Under what conditions is it true that for any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $\mathbf{x} \in \mathbb{N}^{m}$ such that $\left\{f_{1}(\mathbf{x}), \ldots, f_{k}(\mathbf{x})\right\} \subset C$?

We say that $\left\{f_{1}(\mathbf{x}), \ldots, f_{k}(\mathbf{x})\right\}$ is a partition regular configuration.

Theorem (Folkman-Sanders-Rado)
For every $m \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\begin{cases}x_{0} \\ x_{1}, & \\ \\ & \\ & \end{cases}
$$

Theorem (Folkman-Sanders-Rado)
For every $m \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{ll}
x_{0} & \\
x_{1}, & x_{1}+x_{0} \\
x_{2}, & x_{2}+x_{1},
\end{array} x_{2}+x_{0} \quad x_{2}+x_{1}+x_{0}\right.
$$

Theorem (Folkman-Sanders-Rado)
For every $m \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{cccc}
x_{0} & & \\
x_{1}, & x_{1}+x_{0} & & \\
x_{2}, & x_{2}+x_{1}, & x_{2}+x_{0} & x_{2}+x_{1}+x_{0} \\
\vdots & \vdots & \vdots & \ddots \\
x_{m}, & x_{m}+x_{m-1}, & \cdots & x_{m}+x_{m-1}+\cdots+x_{0}
\end{array}\right\} \subset C
$$

Theorem (Deuber)

For every $m, k \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{l}
x_{0}, \\
i x_{0}+x_{1} \\
\\
\end{array}\right.
$$

$$
i \in\{0, \ldots, k\}
$$

Theorem (Deuber)

For every $m, k \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{l}
x_{0} \\
i x_{0}+x_{1} \\
i x_{0}+j x_{1}+x_{2}
\end{array}\right.
$$

$$
\begin{array}{r}
i \in\{0, \ldots, k\} \\
i, j \in\{0 \ldots, k\}
\end{array}
$$

Theorem (Deuber)

For every $m, k \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{l}
x_{0} \\
i x_{0}+x_{1} \\
i x_{0}+j x_{1}+x_{2} \\
\quad \vdots \\
i x_{0}+\cdots+i_{m-1} x_{m-1}+x_{m}
\end{array}\right.
$$

$$
\left.\begin{array}{r}
i \in\{0, \ldots, k\} \\
i, j \in\{0 \ldots, k\} \\
\vdots \\
i_{m-1}, \ldots, i_{0} \in\{0, \ldots, k\}
\end{array}\right\} \subset C
$$

Theorem (Deuber)

For every $m, k, c \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

In fact all partition regular linear configurations are contained in Deuber's theorem.

Theorem (Deuber)

For every $m, k, c \in \mathbb{N}$ and any finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

```
\(\left\{\begin{array}{l}c x_{0}, \\ i x_{0}+c x_{1}, \\ i x_{0}+j x_{1}+c x_{2}, \\ \\ \vdots \\ i_{0} x_{0}+\cdots+i_{m-1} x_{m-1}+c x_{m},\end{array}\right.\)
```

$\left.\begin{array}{r}i \in\{0, \ldots, k\} \\ i, j \in\{0 \ldots, k\} \\ \vdots \\ i_{m-1}, \ldots, i_{0} \in\{0, \ldots, k\}\end{array}\right\} \subset C$

In fact all partition regular linear configurations are contained in Deuber's theorem.

The complete classification of partition regular linear configurations was first obtained by R. Rado in 1933 using a different language.

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that:

Theorem (Furstenberg-Sárközy)
$\left\{x, x+y^{2}\right\} \subset C$.
H. Furstenberg, J. d'Analyse Math., 1977
A. Sárközy, Acta Math. Acad. Sci. Hungar., 1978

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that:

Theorem (Furstenberg-Sárközy)
$\{x, x+f(y)\} \subset C$ for every $f \in \mathbb{Z}[x]$ with $f(0)=0$.
H. Furstenberg, J. d'Analyse Math., 1977
A. Sárközy, Acta Math. Acad. Sci. Hungar., 1978

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that:

Theorem (Furstenberg-Sárközy)
$\{x, x+f(y)\} \subset C$ for every $f \in \mathbb{Z}[x]$ with $f(0)=0$.

Bergelson and Leibman extended this to

Theorem (Polynomial van der Waerden theorem)

Let $f_{1}, \ldots, f_{k} \in \mathbb{Z}[x]$ be polynomials such that $f_{i}(0)=0$ for all
$i=1, \ldots, k$. Then for any finite coloring of $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ there exist a color $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that

$$
\left\{x, x+f_{1}(y), x+f_{2}(y), \ldots, x+f_{k}(y)\right\} \subset C
$$

Theorem (Bergelson-Johnson-M.)

Let $m, c \in \mathbb{N}$ and, for each $i=1,2, \ldots, m$, let F_{i} be a finite set of polynomials $f: \mathbb{Z}^{i} \rightarrow \mathbb{Z}$ such that $f(\mathbf{0})=0$. Then for any finite coloring $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ there exists a color $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{l}
c x_{0} \\
f\left(x_{0}\right)+c x_{1}, \\
\\
\end{array} \quad f \in F_{1}\right.
$$

Theorem (Bergelson-Johnson-M.)

Let $m, c \in \mathbb{N}$ and, for each $i=1,2, \ldots, m$, let F_{i} be a finite set of polynomials $f: \mathbb{Z}^{i} \rightarrow \mathbb{Z}$ such that $f(\mathbf{0})=0$. Then for any finite coloring $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ there exists a color $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{lr}
c x_{0} & f \in F_{1} \\
f\left(x_{0}\right)+c x_{1}, & f \in F_{2} \\
f\left(x_{0}, x_{1}\right)+c x_{2}, & \vdots \\
\vdots &
\end{array}\right.
$$

Theorem (Bergelson-Johnson-M.)

Let $m, c \in \mathbb{N}$ and, for each $i=1,2, \ldots, m$, let F_{i} be a finite set of polynomials $f: \mathbb{Z}^{i} \rightarrow \mathbb{Z}$ such that $f(\mathbf{0})=0$. Then for any finite coloring $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ there exists a color $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{l}
c x_{0} \\
f\left(x_{0}\right)+c x_{1} \\
f\left(x_{0}, x_{1}\right)+c x_{2} \\
\vdots \\
f\left(x_{0}, \ldots, x_{m-1}\right)+c x_{m}
\end{array}\right.
$$

$$
\left.\begin{array}{r}
\\
f \in F_{1} \\
f \in F_{2} \\
\vdots \\
f \in F_{m}
\end{array}\right\} \subset C
$$

Theorem (Bergelson-Johnson-M.)

Let $m, c \in \mathbb{N}$ and, for each $i=1,2, \ldots, m$, let F_{i} be a finite set of polynomials $f: \mathbb{Z}^{i} \rightarrow \mathbb{Z}$ such that $f(\mathbf{0})=0$. Then for any finite coloring $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ there exists a color $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{m} \in \mathbb{N}$ such that

$$
\left\{\begin{array}{lr}
c x_{0} & \\
f\left(x_{0}\right)+c x_{1}, & f \in F_{1} \\
f\left(x_{0}, x_{1}\right)+c x_{2}, & f \in F_{2} \\
\vdots & \vdots \\
f\left(x_{0}, \ldots, x_{m-1}\right)+c x_{m}, & f \in F_{m}
\end{array}\right\} \subset C
$$

This is a joint extension of the polyomial van der Waerden theorem and Folkman's theorem. It contains Deuber's theorem as a special case.

Conjecture

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y, z \in C$ such that $x^{2}+y^{2}=z^{2}$.

Conjecture

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y, z \in C$ such that $x^{2}+y^{2}=z^{2}$.

- If one weakens the condition to $x, z \in C$ and $y \in \mathbb{N}$, the conjecture is still open. The analogue result in the ring of Gaussian integers was established by W. Sun.

Conjecture

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y, z \in C$ such that $x^{2}+y^{2}=z^{2}$.

- If one weakens the condition to $x, z \in C$ and $y \in \mathbb{N}$, the conjecture is still open. The analogue result in the ring of Gaussian integers was established by W. Sun.
- The conjecture has been established when $r=2$, but the proof relies (heavily) on the use of a computer.

Conjecture

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist
$C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y, z \in C$ such that $x^{2}+y^{2}=z^{2}$.

- If one weakens the condition to $x, z \in C$ and $y \in \mathbb{N}$, the conjecture is still open. The analogue result in the ring of Gaussian integers was established by W. Sun.
- The conjecture has been established when $r=2$, but the proof relies (heavily) on the use of a computer.
- The conjecture is equivalent to ask if the configuration $\left\{2 k m n, k\left(m^{2}-n^{2}\right), k\left(m^{2}+n^{2}\right)\right\}$ is partition regular.
- The conjecture is equivalent to ask if any multiplicatively syndetic set contains a Pythagorean triple.

For any finite partition $\mathbb{N}=C_{1} \cup \cdots C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and...

- Schur: $x, y \in \mathbb{N}$ such that $\{x, y, x+y\} \subset C$.

For any finite partition $\mathbb{N}=C_{1} \cup \cdots C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and...

- Schur: $x, y \in \mathbb{N}$ such that $\{x, y, x+y\} \subset C$.
- Corollary: $x, y \in \mathbb{N}$ such that $\{x, y, x y\} \subset C$. [Proof: restrict the coloring to $\left\{2^{1}, 2^{2}, 2^{3}, \ldots\right\}$.]

For any finite partition $\mathbb{N}=C_{1} \cup \cdots C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and...

- Schur: $x, y \in \mathbb{N}$ such that $\{x, y, x+y\} \subset C$.
- Corollary: $x, y \in \mathbb{N}$ such that $\{x, y, x y\} \subset C$. [Proof: restrict the coloring to $\left\{2^{1}, 2^{2}, 2^{3}, \ldots\right\}$.]
- Hindman: $x, y, x^{\prime}, y^{\prime} \in \mathbb{N}$ such that

$$
\left\{x, y, x+y, \quad x^{\prime}, y^{\prime}, x^{\prime} y^{\prime}\right\} \subset C
$$

In other words, one can use the same color for both triples.

For any finite partition $\mathbb{N}=C_{1} \cup \cdots C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and...

- Schur: $x, y \in \mathbb{N}$ such that $\{x, y, x+y\} \subset C$.
- Corollary: $x, y \in \mathbb{N}$ such that $\{x, y, x y\} \subset C$. [Proof: restrict the coloring to $\left\{2^{1}, 2^{2}, 2^{3}, \ldots\right\}$.]
- Hindman: $x, y, x^{\prime}, y^{\prime} \in \mathbb{N}$ such that

$$
\left\{x, y, x+y, \quad x^{\prime}, y^{\prime}, x^{\prime} y^{\prime}\right\} \subset C
$$

In other words, one can use the same color for both triples.

- A variation on Hindman's method gives $x=x^{\prime}$.

Conjecture

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x+y, x y\} \subset C$.

An analogue in finite fields was recently established by B. Green and T. Sanders.

[^0]
Conjecture

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x+y, x y\} \subset C$.

An analogue in finite fields was recently established by B. Green and T. Sanders.

Conjecture

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that $\{x+y, x y\} \subset C$.

[^1]
Conjecture

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that $\{x, y, x+y, x y\} \subset C$.

An analogue in finite fields was recently established by B. Green and T. Sanders.

Theorem (M.)
For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y \in \mathbb{N}$ such that $\{x, x+y, x y\} \subset C$.

Theorem (M.)
Let $s \in \mathbb{N}$ and, for each $i=1, \ldots, s$, let $F_{i} \subset \mathbb{Z}\left[x_{1}, \ldots, x_{i}\right]$ be a finite set of polynomials such that with 0 constant term.
Then for any finite coloring $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x_{0}, \ldots, x_{s} \in \mathbb{N}$ such that for every $i, j \in \mathbb{Z}$ with $0 \leq j<i \leq s$ and every $f \in F_{i-j}$ we have

$$
x_{0} \cdots x_{j}+f\left(x_{j+1}, \ldots, x_{i}\right) \in C
$$

Corollary

For every finite coloring $\mathbb{N}=C_{1} \cup C_{2} \cup \cdots \cup C_{r}$ there exist $C \in\left\{C_{1}, \ldots, C_{r}\right\}$ and $x, y, z, t, w \in \mathbb{N}$ such that

$$
\left\{\begin{array}{cccc}
x & & & \\
x y, & x+y & & \\
x y z, & x+y z, & x y+z & \\
x y z t, & x+y z t, & x y+z t, & x y z+t \\
x y z t w, & x+y z t w, & x y+z t w, & x y z+t w
\end{array} \quad x y z t+w\right\}
$$

Corollary

Let $k \in \mathbb{N}$ and $c_{1}, \ldots, c_{k} \in \mathbb{Z} \backslash\{0\}$ be such that $c_{1}+\cdots+c_{k}=0$.
Then for any finite coloring of \mathbb{N} there exist pairwise distinct $a_{0}, \ldots, a_{k} \in \mathbb{N}$, all of the same color, such that

$$
c_{1} a_{1}^{2}+\cdots+c_{k} a_{k}^{2}=a_{0}
$$

In particular, there exist $x, y, z \in C$ such that $x^{2}-y^{2}=z$.

- Given $E \subset \mathbb{N}$, its upper density is

$$
\bar{d}(E):=\limsup _{N \rightarrow \infty} \frac{|E \cap\{1, \ldots, N\}|}{N}
$$

- Upper density is shift invariant: $\bar{d}(E-n)=\bar{d}(E)$ for all n.
- $\bar{d}(A \cup B) \leq \bar{d}(A)+\bar{d}(B)$.
- In particular, for any finite coloring $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ some C_{i} has positive upper density.

A measure preserving system is a triple (X, μ, T), where

- (X, μ) is a probability space.
- $T: X \rightarrow X$ preserves μ, i.e., for any (measurable) set $A \subset X$,

$$
\mu\left(T^{-1} A\right)=\mu(\{x \in X: T x \in A\})=\mu(A)
$$

A measure preserving system is a triple (X, μ, T), where

- (X, μ) is a probability space.
- $T: X \rightarrow X$ preserves μ, i.e., for any (measurable) set $A \subset X$,

$$
\mu\left(T^{-1} A\right)=\mu(\{x \in X: T x \in A\})=\mu(A)
$$

Example

- Let $X=[0,1], \mu=$ Lebesgue measure, $T: x \mapsto x+\alpha \bmod 1$, for some $\alpha \in \mathbb{R}$.
- Let $X=[0,1], \mu=$ Lebesgue measure, $T: x \mapsto 2 x \bmod 1$.

A measure preserving system is a triple (X, μ, T), where

- (X, μ) is a probability space.
- $T: X \rightarrow X$ preserves μ, i.e., for any (measurable) set $A \subset X$,

$$
\mu\left(T^{-1} A\right)=\mu(\{x \in X: T x \in A\})=\mu(A)
$$

Example

- Let $X=[0,1], \mu=$ Lebesgue measure, $T: x \mapsto x+\alpha \bmod 1$, for some $\alpha \in \mathbb{R}$.
- Let $X=[0,1], \mu=$ Lebesgue measure, $T: x \mapsto 2 x \bmod 1$.

Not quite an example: $X=\mathbb{N}, \mu=\bar{d}$ and $T: x \mapsto x+1$.

A measure preserving system is a triple (X, μ, T), where

- (X, μ) is a probability space.
- $T: X \rightarrow X$ preserves μ, i.e., for any (measurable) set $A \subset X$,

$$
\mu\left(T^{-1} A\right)=\mu(\{x \in X: T x \in A\})=\mu(A)
$$

Theorem (Furstenberg Correspondence Principle)
Let $E \subset \mathbb{N}$. There exists a measure preserving system (X, μ, T) and a set $A \subset X$ such that $\mu(A)=\bar{d}(E)$ and
$\bar{d}\left(\left(E-n_{1}\right) \cap\left(E-n_{2}\right) \cap \cdots \cap\left(E-n_{k}\right)\right) \geq \mu\left(T^{-n_{1}} A \cap T^{-n_{2}} A \cap \cdots \cap T^{-n_{k}} A\right)$ for any $n_{1}, \ldots, n_{k} \in \mathbb{N}$.

Szemerédi's theorem follows from the correspondence principle together with:

Theorem (Furstenberg's multiple recurrence theorem)
Let (X, μ, T) be a measure preserving system and let $A \subset X$ with $\mu(A)>0$. Then for every k

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A \cap T^{-2 n} A \cap \cdots \cap T^{-k n} A\right)>0
$$

Szemerédi's theorem follows from the correspondence principle together with:

Theorem (Furstenberg's multiple recurrence theorem)
Let (X, μ, T) be a measure preserving system and let $A \subset X$ with $\mu(A)>0$. Then for every k

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A \cap T^{-2 n} A \cap \cdots \cap T^{-k n} A\right)>0
$$

Theorem (von Neumann's Ergodic Theorem)
Let (X, μ, T) be a measure preserving system and let $A \subset X$. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A\right) \geq \mu(A)^{2}
$$

Let $E \subset \mathbb{N}$ with $\bar{d}(E)>0$.

- $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n^{2}} A\right) \geq \mu(A)^{2}$
- Corresponds to $\left\{x, x+y^{2}\right\} \subset E$.

Let $E \subset \mathbb{N}$ with $\bar{d}(E)>0$.

- $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n^{2}} A\right) \geq \mu(A)^{2}$
- Corresponds to $\left\{x, x+y^{2}\right\} \subset E$.
- $\lim _{N \rightarrow \infty} \frac{1}{\pi(N)} \sum_{p \leq N} \mu\left(A \cap T^{-(p-1)} A \cap \cdots \cap T^{-k(p-1)} A\right)>0$
- Corresponds to $\{x, x+(p-1), \cdots, x+k(p-1)\} \subset E$.

Let $E \subset \mathbb{N}$ with $\bar{d}(E)>0$.

- $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n^{2}} A\right) \geq \mu(A)^{2}$
- Corresponds to $\left\{x, x+y^{2}\right\} \subset E$.
- $\lim _{N \rightarrow \infty} \frac{1}{\pi(N)} \sum_{p \leq N} \mu\left(A \cap T^{-(p-1)} A \cap \cdots \cap T^{-k(p-1)} A\right)>0$
- Corresponds to $\{x, x+(p-1), \cdots, x+k(p-1)\} \subset E$.
- For any $f \in \mathbb{Z}[x]$ with $f(1)=0$,
$\lim _{N \rightarrow \infty} \frac{1}{\pi(N)} \sum_{p \leq N} \mu\left(A \cap T^{-f(p)} A \cap \cdots \cap T^{-k f(p)} A\right)>0$
- Corresponds to $\{x, x+f(p), \cdots, x+k f(p)\} \subset E$.

Want to show that for any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, some C_{i} contains a configuration $\{n+m, n m\}$.

Want to show that for any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, some C_{i} contains a configuration $\{n+m, n m\}$.

$$
\{n+m, n m\} \subset C \Longleftrightarrow m \in(C-n) \cap(C / n)
$$

where

$$
C-n=\{m \in \mathbb{N}: m+n \in C\} \quad C / n=\{m \in \mathbb{N}: m n \in C\}
$$

Want to show that for any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, some C_{i} contains a configuration $\{n+m, n m\}$.

$$
\{n+m, n m\} \subset C \Longleftrightarrow m \in(C-n) \cap(C / n)
$$

where

$$
C-n=\{m \in \mathbb{N}: m+n \in C\} \quad C / n=\{m \in \mathbb{N}: m n \in C\}
$$

Thus we need a notion of density invariant under addition and multiplication.

$$
d(C-n)=d(C) \quad \text { and } \quad d(C / n)=d(C)
$$

Want to show that for any finite partition $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$, some C_{i} contains a configuration $\{n+m, n m\}$.

$$
\{n+m, n m\} \subset C \Longleftrightarrow m \in(C-n) \cap(C / n)
$$

where

$$
C-n=\{m \in \mathbb{N}: m+n \in C\} \quad C / n=\{m \in \mathbb{N}: m n \in C\}
$$

Thus we need a notion of density invariant under addition and multiplication.

$$
d(C-n)=d(C) \quad \text { and } \quad d(C / n)=d(C)
$$

Unfortunately, no such density exists on \mathbb{N}.
The semigroup generated by addition and multiplication - the semigroup of all affine transformations $x \mapsto a x+b$ with $a, b \in \mathbb{N}-$ is not amenable.

- Denote by $\mathcal{A}_{\mathbb{Q}}$ the group of all affine transformations of \mathbb{Q} :

$$
\mathcal{A}_{\mathbb{Q}}:=\{x \mapsto a x+b: a, b \in \mathbb{Q}, a \neq 0\}
$$

- This is the semidirect product of the groups $(\mathbb{Q},+)$ and $\left(\mathbb{Q}^{*}, \times\right)$; hence it is solvable, and in particular amenable.
- Denote by $\mathcal{A}_{\mathbb{Q}}$ the group of all affine transformations of \mathbb{Q} :

$$
\mathcal{A}_{\mathbb{Q}}:=\{x \mapsto a x+b: a, b \in \mathbb{Q}, a \neq 0\}
$$

- This is the semidirect product of the groups $(\mathbb{Q},+)$ and $\left(\mathbb{Q}^{*}, \times\right)$; hence it is solvable, and in particular amenable.

Proposition

There exists an upper density $\bar{d}: \mathcal{P}(\mathbb{Q}) \rightarrow[0,1]$ which is invariant under both addition and multiplication, i.e.,

$$
\bar{d}(E)=\bar{d}(E-x)=\bar{d}(E / x)
$$

Equivalently, there exists a sequence $\left(F_{N}\right)_{N \in \mathbb{N}}$ of finite subsets of \mathbb{Q} such that for every $x \in \mathbb{Q} \backslash\{0\}$,

$$
\lim _{N \rightarrow \infty} \frac{\left|F_{N} \cap\left(F_{N}+x\right)\right|}{\left|F_{N}\right|}=\lim _{N \rightarrow \infty} \frac{\left|F_{N} \cap\left(F_{N} x\right)\right|}{\left|F_{N}\right|}=1
$$

Theorem (Bergelson, M.) If $C \subset \mathbb{Q}$ has $\bar{d}(C)>0$, then there exist

- "many" $x, y \in \mathbb{Q}$ such that $\{x+y, x y\} \subset C$;

Vitaly Bergelson

Theorem (Bergelson, M.) If $C \subset \mathbb{Q}$ has $\bar{d}(C)>0$, then there exist

- "many" $x, y \in \mathbb{Q}$ such that $\{x+y, x y\} \subset C$;
- "many" $x \in \mathbb{Q}, y \in \mathbb{N}$ such that $\{x+y, x y\} \subset C$.

Vitaly Bergelson

The proofs have three ingredients:

- The existence of a doubly invariant upper density \bar{d},
- A modified Furstenberg Correspondence principle,
- A "mixed" ergodic theorem:

The proofs have three ingredients:

- The existence of a doubly invariant upper density \bar{d},
- A modified Furstenberg Correspondence principle,
- A "mixed" ergodic theorem:

Theorem (Bergelson, M.)
Let $E \subset \mathbb{Q}$ and assume that $\bar{d}(E)>0$. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|F_{N}\right|} \sum_{x \in F_{N}} \bar{d}((E-x) \cap(E / x))>0
$$

For $u \in \mathbb{Q}$, let $M_{u}: x \mapsto u x$ and $A_{u}: x \mapsto u+x$.
Theorem (Bergelson, M.)
Let $\left(U_{g}\right)_{g \in \mathcal{A}_{\mathbb{Q}}}$ be a unitary representation of $\mathcal{A}_{\mathbb{Q}}$ on a Hilbert space H with no fixed vectors. Then for every $f \in H$,

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|F_{N}\right|} \sum_{u \in F_{N}} M_{u} A_{u} f=0
$$

For $u \in \mathbb{Q}$, let $M_{u}: x \mapsto u x$ and $A_{u}: x \mapsto u+x$.
Theorem (Bergelson, M.)
Let $\left(U_{g}\right)_{g \in \mathcal{A}_{\mathbb{Q}}}$ be a unitary representation of $\mathcal{A}_{\mathbb{Q}}$ on a Hilbert space H with no fixed vectors. Then for every $f \in H$,

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|F_{N}\right|} \sum_{u \in F_{N}} M_{u} A_{u} f=0
$$

The key is to realize the map $g: \mathbb{Q} \rightarrow \mathcal{A}_{\mathbb{Q}}$ taking u to $M_{u} A_{u}$ as a "polynomial".

For $u \in \mathbb{Q}$, let $M_{u}: x \mapsto u x$ and $A_{u}: x \mapsto u+x$.
Theorem (Bergelson, M.)
Let $\left(U_{g}\right)_{g \in \mathcal{A}_{\mathbb{Q}}}$ be a unitary representation of $\mathcal{A}_{\mathbb{Q}}$ on a Hilbert space H with no fixed vectors. Then for every $f \in H$,

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|F_{N}\right|} \sum_{u \in F_{N}} M_{u} A_{u} f=0
$$

The key is to realize the map $g: \mathbb{Q} \rightarrow \mathcal{A}_{\mathbb{Q}}$ taking u to $M_{u} A_{u}$ as a "polynomial".

- Let $\Delta_{h}^{A} g(u)=g(u)^{-1} g(u+h)$ and $\Delta_{h}^{M} g(u)=g(u)^{-1} g(u h)$.

For $u \in \mathbb{Q}$, let $M_{u}: x \mapsto u x$ and $A_{u}: x \mapsto u+x$.
Theorem (Bergelson, M.)
Let $\left(U_{g}\right)_{g \in \mathcal{A}_{\mathbb{Q}}}$ be a unitary representation of $\mathcal{A}_{\mathbb{Q}}$ on a Hilbert space H with no fixed vectors. Then for every $f \in H$,

$$
\lim _{N \rightarrow \infty} \frac{1}{\left|F_{N}\right|} \sum_{u \in F_{N}} M_{u} A_{u} f=0
$$

The key is to realize the map $g: \mathbb{Q} \rightarrow \mathcal{A}_{\mathbb{Q}}$ taking u to $M_{u} A_{u}$ as a "polynomial".

- Let $\Delta_{h}^{A} g(u)=g(u)^{-1} g(u+h)$ and $\Delta_{h}^{M} g(u)=g(u)^{-1} g(u h)$.
- We have that for all $h, \tilde{h} \in \mathbb{Q}$,
$\Delta_{h}^{A} \Delta_{\tilde{h}}^{M} g$ is constant!

Let $\mathcal{A}_{\mathbb{N}}^{-}:=\{x \mapsto a x+b: a \in \mathbb{N}, b \in \mathbb{Z}\}$.
Theorem (A topological correspondence principle)
There exists an $\mathcal{A}_{\mathbb{N}}^{-}$-topological system $\left(X,\left(T_{g}\right)_{g \in \mathcal{A}_{\mathbb{N}}^{-}}\right)$with a dense set of additively minimal points, such that each map $T_{g}: X \rightarrow X$ is open and injective, and with the property that for any finite coloring $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ there exists an open cover $X=U_{1} \cup \cdots \cup U_{r}$ such that for any $g_{1}, \ldots, g_{k} \in \mathcal{A}_{\mathbb{N}}^{-}$and $t \in\{1, \ldots, r\}$,

$$
\bigcap_{\ell=1}^{k} T_{g_{\ell}}\left(U_{t}\right) \neq \emptyset \quad \Longrightarrow \quad \mathbb{N} \cap \bigcap_{\ell=1}^{k} g_{\ell}\left(C_{t}\right) \neq \emptyset
$$

Let $\mathcal{A}_{\mathbb{N}}^{-}:=\{x \mapsto a x+b: a \in \mathbb{N}, b \in \mathbb{Z}\}$.
Theorem (A topological correspondence principle)
There exists an $\mathcal{A}_{\mathbb{N}}^{-}$-topological system $\left(X,\left(T_{g}\right)_{g \in \mathcal{A}_{\mathbb{N}}^{-}}\right)$with a dense set of additively minimal points, such that each map $T_{g}: X \rightarrow X$ is open and injective, and with the property that for any finite coloring $\mathbb{N}=C_{1} \cup \cdots \cup C_{r}$ there exists an open cover $X=U_{1} \cup \cdots \cup U_{r}$ such that for any $g_{1}, \ldots, g_{k} \in \mathcal{A}_{\mathbb{N}}^{-}$and $t \in\{1, \ldots, r\}$,

$$
\bigcap_{\ell=1}^{k} T_{g_{\ell}}\left(U_{t}\right) \neq \emptyset \quad \Longrightarrow \quad \mathbb{N} \cap \bigcap_{\ell=1}^{k} g_{\ell}\left(C_{t}\right) \neq \emptyset
$$

- In particular, if $A_{y}^{-1} U_{t} \cap M_{y}^{-1} U_{t} \neq \emptyset$, then $C_{t} \supset\{x+y, x y\}$ for some x, where $A_{y}: x \mapsto x+y$ and $M_{y}: x \mapsto x y$.

Theorem

For every "nice" topological system $\left(X,\left(T_{g}\right)_{g \in \mathcal{A}_{\mathcal{N}}^{-}}\right)$and every open cover $X=U_{1} \cup U_{2} \cup \cdots \cup U_{r}$ there exist $U \in\left\{U_{1}, \ldots, U_{r}\right\}$ and $y \in \mathbb{N}$ such that

$$
A_{y}^{-1} U \cap M_{y}^{-1} U \neq \emptyset
$$

Theorem

For every "nice" topological system $\left(X,\left(T_{g}\right)_{g \in \mathcal{A}_{\mathcal{N}}^{-}}\right)$and every open cover $X=U_{1} \cup U_{2} \cup \cdots \cup U_{r}$ there exist $U \in\left\{U_{1}, \ldots, U_{r}\right\}$ and $y \in \mathbb{N}$ such that

$$
A_{y}^{-1} U \cap M_{y}^{-1} U \neq \emptyset
$$

Equivalently

$$
M_{y} A_{-y} U \cap U \neq \emptyset .
$$

Theorem

For every "nice" topological system $\left(X,\left(T_{g}\right)_{g \in \mathcal{A}_{\mathbb{N}}^{-}}\right)$and every open cover $X=U_{1} \cup U_{2} \cup \cdots \cup U_{r}$ there exist $U \in\left\{U_{1}, \ldots, U_{r}\right\}$ and $y \in \mathbb{N}$ such that

$$
A_{y}^{-1} U \cap M_{y}^{-1} U \neq \emptyset
$$

Equivalently

$$
M_{y} A_{-y} U \cap U \neq \emptyset .
$$

Idea
Find a sequence B_{1}, B_{2}, \ldots of non-empty sets such that

- Each B_{i} is contained in a single color U_{j};
- For every $i<j$ there is $y \in \mathbb{N}$ such that $B_{j} \subset M_{y} A_{-y}\left(B_{i}\right)$

We want to find a sequence B_{1}, B_{2}, \ldots of non-empty sets such that

- Each B_{i} is contained in a single color;
- For every $i<j$ there is $y \in \mathbb{N}$ such that $B_{j} \subset M_{y} A_{-y}\left(B_{i}\right)$

We want to find a sequence B_{1}, B_{2}, \ldots of non-empty sets such that

- Each B_{i} is contained in a single color;
- For every $i<j$ there is $y \in \mathbb{N}$ such that $B_{j} \subset M_{y} A_{-y}\left(B_{i}\right)$

We want to find a sequence B_{1}, B_{2}, \ldots of non-empty sets such that

- Each B_{i} is contained in a single color;
- For every $i<j$ there is $y \in \mathbb{N}$ such that $B_{j} \subset M_{y} A_{-y}\left(B_{i}\right)$

To run the iterative construction we use the following version of van der Waerden's theorem:

Theorem
Let $\left(X,\left(T_{g}\right)_{g \in \mathcal{A}_{\mathbb{N}}^{-}}\right)$be a "nice" topological system and $B \subset X$ open and non-empty. Then for every $k \in \mathbb{N}$ there exists $y \in \mathbb{N}$ such that
$B \cap A_{-y} B \cap A_{-2 y} B \cap \cdots \cap A_{-k y} B \neq \emptyset$

Questions?

[^0]: B. Green, T. Sanders, Disc. Anal., 2016

[^1]: B. Green, T. Sanders, Disc. Anal., 2016

