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Theorem (Schur)

For any finite coloring N = C1 [ C2 [ · · · [ C
r

there exits
C 2 {C1, . . . ,Cr

} and x , y 2 N such that {x , y , x + y} ⇢ C .

Issai Schur

Theorem (Schur, again)

For every r there exists N 2 N such that for
every partition {1, . . . ,N} = C1 [ · · · [ C

r

there exist C 2 {C1, . . . ,Cr

} and
x , y 2 {1, . . . ,N} such that {x , y , x + y} ⇢ C .

Schur used this to show that any large enough
finite field contains nontrivial solutions to
Fermat’s equation xn + yn = zn.

I. Schur, Jahresbericht der Deutschen Math, 1916
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Theorem (van der Waerden)

For every k 2 N and any finite partition N = C1 [ · · · [ C
r

, there
exist C 2 {C1, . . . ,Cr

} and x , y 2 N such that

{x , x + y , x + 2y , . . . , x + ky} ⇢ C

Theorem (Brauer)

For every k 2 N and any finite partition N = C1 [ · · · [ C
r

, there
exist C 2 {C1, . . . ,Cr

} and x , y 2 N such that

{x , y , x + y , x + 2y , . . . , x + ky} ⇢ C

B. van der Waerden, Nieuw. Arch. Wisk., 1927

A. Brauer, Sitz.ber. de Preus. Akad. Wiss., Phys.-Math. Kl., 1928
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For every k 2 N and any finite coloring N = C1 [ C2 [ · · · [ C
r

there exist C 2 {C1, . . . ,Cr

} and x , y 2 N such that

I
Schur: {x , y , x + y} ⇢ C .

I
van der Waerden: {x , x + y , x + 2y , . . . , x + ky} ⇢ C .

I
Brauer: {x , y , x + y , x + 2y , . . . , x + ky} ⇢ C .

Problem

Let f1, . . . , f
k

: Nm ! N. Under what conditions is it true that for
any finite coloring N = C1 [ C2 [ · · · [ C

r

there exist
C 2 {C1, . . . ,Cr

} and x 2 Nm such that {f1(x), . . . , f
k

(x)} ⇢ C?

We say that {f1(x), . . . , f
k

(x)} is a partition regular configuration.
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Theorem (Folkman-Sanders-Rado)

For every m 2 N and any finite coloring N = C1 [ C2 [ · · · [ C
r

there exist C 2 {C1, . . . ,Cr

} and x0, . . . , xm 2 N such that

8
>>>>><

>>>>>:

x0
x1, x1 + x0

x2, x2 + x1, x2 + x0 x2 + x1 + x0
...

...
...

. . .

x
m

, x
m

+ x
m�1, . . . x

m

+ x
m�1 + · · ·+ x0

9
>>>>>=

>>>>>;

⇢ C
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Theorem (Deuber)

For every m, k 2 N and any finite coloring N = C1 [ C2 [ · · · [ C
r

there exist C 2 {C1, . . . ,Cr

} and x0, . . . , xm 2 N such that

8
>>>>><

>>>>>:

x0,
ix0 + x1, i 2 {0, . . . , k}

ix0 + jx1 + x2, i , j 2 {0 . . . , k}
...

...
i0x0 + · · ·+ i

m�1xm�1 + x
m

, i
m�1, . . . , i0 2 {0, . . . , k}

9
>>>>>=

>>>>>;

⇢ C

In fact all partition regular linear configurations are contained in
Deuber’s theorem.

The complete classification of partition regular linear configurations
was first obtained by R. Rado in 1933 using a di↵erent language.

W. Deuber, Math. Z, 1973
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For every finite coloring N = C1 [ C2 [ · · · [ C
r

there exist
C 2 {C1, . . . ,Cr

} and x , y 2 N such that:

Theorem (Furstenberg-Sárközy)

{x , x + y2} ⇢ C .

{x , x + f (y)} ⇢ C for
every f 2 Z[x ] with f (0) = 0.

Bergelson and Leibman extended this to

Theorem (Polynomial van der Waerden theorem)

Let f1, . . . , f
k

2 Z[x ] be polynomials such that f
i

(0) = 0 for all
i = 1, . . . , k . Then for any finite coloring of N = C1 [ · · · [ C

r

there exist a color C 2 {C1, . . . ,Cr

} and x , y 2 N such that

�
x , x + f1(y), x + f2(y), . . . , x + f

k

(y)
 
⇢ C

H. Furstenberg, J. d’Analyse Math., 1977

A. Sárközy, Acta Math. Acad. Sci. Hungar., 1978
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Theorem (Bergelson-Johnson-M.)

Let m, c 2 N and, for each i = 1, 2, . . . ,m, let F
i

be a finite set of
polynomials f : Zi ! Z such that f (0) = 0. Then for any finite
coloring N = C1 [ · · · [ C

r

there exists a color C 2 {C1, . . . ,Cr

}
and x0, . . . , xm 2 N such that

8
>>>>><

>>>>>:

cx0
f (x0) + cx1, f 2 F1

f (x0, x1) + cx2, f 2 F2
...

...
f (x0, . . . , xm�1) + cx

m

, f 2 F
m

9
>>>>>=

>>>>>;

⇢ C

This is a joint extension of the polyomial van der Waerden theorem
and Folkman’s theorem. It contains Deuber’s theorem as a special
case.

V. Bergelson, John Johnson and J. Moreira, J. Comb. Theory A, 2017
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Conjecture

For every finite coloring N = C1 [ C2 [ · · · [ C
r

there exist
C 2 {C1, . . . ,Cr

} and x , y , z 2 C such that x2 + y2 = z2.

I If one weakens the condition to x , z 2 C and y 2 N, the
conjecture is still open. The analogue result in the ring of
Gaussian integers was established by W. Sun.

I The conjecture has been established when r = 2, but the
proof relies (heavily) on the use of a computer.

I The conjecture is equivalent to ask if the configuration�
2kmn, k(m2 � n2), k(m2 + n2)

 
is partition regular.

I The conjecture is equivalent to ask if any multiplicatively
syndetic set contains a Pythagorean triple.
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For any finite partition N = C1 [ · · ·C
r

there exist
C 2 {C1, . . . ,Cr

} and...

I Schur: x , y 2 N such that {x , y , x + y} ⇢ C .

I Corollary: x , y 2 N such that {x , y , xy} ⇢ C .
[Proof: restrict the coloring to {21, 22, 23, . . . }.]

I Hindman: x , y , x 0, y 0 2 N such that

{x , y , x + y , x 0, y 0, x 0y 0} ⇢ C

In other words, one can use the same color for both triples.

I A variation on Hindman’s method gives x = x 0.
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Theorem (M.)

Let s 2 N and, for each i = 1, . . . , s, let F
i

⇢ Z[x1, . . . , xi ] be a
finite set of polynomials such that with 0 constant term.
Then for any finite coloring N = C1 [ · · · [ C

r

there exist
C 2 {C1, . . . ,Cr

} and x0, . . . , xs 2 N such that for every i , j 2 Z
with 0  j < i  s and every f 2 F

i�j

we have

x0 · · · xj + f (x
j+1, . . . , xi ) 2 C

J. Moreira, Ann. of Math., 2017



Corollary

For every finite coloring N = C1 [ C2 [ · · · [ C
r

there exist
C 2 {C1, . . . ,Cr

} and x , y , z , t,w 2 N such that

8
>>>><

>>>>:

x
xy , x + y
xyz , x + yz , xy + z
xyzt, x + yzt, xy + zt, xyz + t
xyztw , x + yztw , xy + ztw , xyz + tw xyzt + w

9
>>>>=

>>>>;

⇢ C

Corollary

Let k 2 N and c1, . . . , c
k

2 Z \ {0} be such that c1 + · · ·+ c
k

= 0.
Then for any finite coloring of N there exist pairwise distinct
a0, . . . , a

k

2 N, all of the same color, such that

c1a
2
1 + · · ·+ c

k

a2
k

= a0.

In particular, there exist x , y , z 2 C such that x2 � y2 = z .



I Given E ⇢ N, its upper density is

d(E ) := lim sup
N!1

��E \ {1, . . . ,N}
��

N

I Upper density is shift invariant: d̄(E � n) = d̄(E ) for all n.

I d̄(A [ B)  d̄(A) + d̄(B).

I In particular, for any finite coloring N = C1 [ · · · [ C
r

some C
i

has positive upper density.



A measure preserving system is a triple (X , µ,T ), where

I (X , µ) is a probability space.

I T : X ! X preserves µ, i.e., for any (measurable) set A ⇢ X ,

µ
�
T�1A

�
= µ

�
{x 2 X : Tx 2 A}

�
= µ(A).

Example

I Let X = [0, 1], µ = Lebesgue measure, T : x 7! x + ↵ mod 1,
for some ↵ 2 R.

I Let X = [0, 1], µ = Lebesgue measure, T : x 7! 2x mod 1.

Not quite an example: X = N, µ = d̄ and T : x 7! x + 1.
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A measure preserving system is a triple (X , µ,T ), where

I (X , µ) is a probability space.

I T : X ! X preserves µ, i.e., for any (measurable) set A ⇢ X ,

µ
�
T�1A

�
= µ

�
{x 2 X : Tx 2 A}

�
= µ(A).

Theorem (Furstenberg Correspondence Principle)

Let E ⇢ N. There exists a measure preserving system (X , µ,T )
and a set A ⇢ X such that µ(A) = d(E ) and

d
�
(E�n1)\(E�n2)\· · ·\(E�n

k

)
�
� µ

�
T�n1A\T�n2A\· · ·\T�n

kA
�

for any n1, . . . , n
k

2 N.



Szemerédi’s theorem follows from the correspondence principle
together with:

Theorem (Furstenberg’s multiple recurrence theorem)

Let (X , µ,T ) be a measure preserving system and let A ⇢ X with
µ(A) > 0. Then for every k

lim
N!1

1

N

NX

n=1

µ
�
A \ T�nA \ T�2nA \ · · · \ T�knA

�
> 0

Theorem (von Neumann’s Ergodic Theorem)

Let (X , µ,T ) be a measure preserving system and let A ⇢ X . Then

lim
N!1

1

N

NX

n=1

µ
�
A \ T�nA

�
� µ(A)2
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Let E ⇢ N with d̄(E ) > 0.

I lim
N!1

1

N

NX

n=1

µ(A \ T�n

2
A) � µ(A)2

I Corresponds to {x , x + y2} ⇢ E .

I lim
N!1

1

⇡(N)

X

pN

µ(A \ T�(p�1)A \ · · · \ T�k(p�1)A) > 0

I Corresponds to {x , x + (p � 1), · · · , x + k(p � 1)} ⇢ E .

I For any f 2 Z[x ] with f (1) = 0,

lim
N!1

1

⇡(N)

X

pN

µ(A \ T�f (p)A \ · · · \ T�kf (p)A) > 0

I Corresponds to {x , x + f (p), · · · , x + kf (p)} ⇢ E .
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Want to show that for any finite partition N = C1 [ · · · [ C
r

, some
C
i

contains a configuration {n +m, nm}.

{n +m, nm} ⇢ C () m 2 (C � n) \ (C/n),

where

C � n = {m 2 N : m + n 2 C} C/n = {m 2 N : mn 2 C}

Thus we need a notion of density invariant under addition and
multiplication.

d(C � n) = d(C ) and d(C/n) = d(C )

Unfortunately, no such density exists on N.
The semigroup generated by addition and multiplication – the
semigroup of all a�ne transformations x 7! ax + b with a, b 2 N –
is not amenable.
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I Denote by AQ the group of all a�ne transformations of Q:

AQ :=
�
x 7! ax + b : a, b 2 Q, a 6= 0

 

I This is the semidirect product of the groups (Q,+) and
(Q⇤,⇥); hence it is solvable, and in particular amenable.

Proposition

There exists an upper density d̄ : P(Q) ! [0, 1] which is invariant
under both addition and multiplication, i.e.,

d̄(E ) = d̄(E � x) = d̄(E/x).

Equivalently, there exists a sequence (F
N

)
N2N of finite subsets of

Q such that for every x 2 Q \ {0},

lim
N!1

|F
N

\ (F
N

+ x)|
|F

N

| = lim
N!1

|F
N

\ (F
N

x)|
|F

N

| = 1
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Vitaly Bergelson

Theorem (Bergelson, M.)

If C ⇢ Q has d̄(C ) > 0, then there exist

I “many” x , y 2 Q such that
{x + y , xy} ⇢ C ;

I “many” x 2 Q, y 2 N such that
{x + y , xy} ⇢ C .

V. Bergelson, M., Erg. Theo. Dyn. Syst., 2016

V. Bergelson, M., Erg. Theo. Dyn. Syst., 2018
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The proofs have three ingredients:

I The existence of a doubly invariant upper density d̄ ,

I A modified Furstenberg Correspondence principle,

I A “mixed” ergodic theorem:

Theorem (Bergelson, M.)

Let E ⇢ Q and assume that d̄(E ) > 0. Then

lim
N!1

1

|F
N

|
X

x2F
N

d̄
⇣
(E � x) \ (E/x)

⌘
> 0
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For u 2 Q, let M
u

: x 7! ux and A
u

: x 7! u + x .

Theorem (Bergelson, M.)

Let (U
g

)
g2AQ be a unitary representation of AQ on a Hilbert space

H with no fixed vectors. Then for every f 2 H,

lim
N!1

1

|F
N

|
X

u2F
N

M
u

A
u

f = 0

The key is to realize the map g : Q ! AQ taking u to M
u

A
u

as a
“polynomial”.

I Let �A

h

g(u) = g(u)�1g(u + h) and �M

h

g(u) = g(u)�1g(uh).

I We have that for all h, h̃ 2 Q,

�A

h

�M

h̃

g is constant!
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Let A�
N := {x 7! ax + b : a 2 N, b 2 Z}.

Theorem (A topological correspondence principle)

There exists an A�
N -topological system (X , (T

g

)
g2A�

N
) with a

dense set of additively minimal points, such that each map
T
g

: X ! X is open and injective, and with the property that for
any finite coloring N = C1 [ · · · [ C

r

there exists an open cover
X = U1 [ · · · [ U

r

such that for any g1, . . . , g
k

2 A�
N and

t 2 {1, . . . , r},

k\

`=1

T
g`(Ut

) 6= ; =) N \
k\

`=1

g`(Ct

) 6= ;

I In particular, if A�1
y

U
t

\M�1
y

U
t

6= ;, then C
t

� {x + y , xy}
for some x , where A

y

: x 7! x + y and M
y

: x 7! xy .
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Theorem

For every “nice” topological system (X , (T
g

)
g2A�

N
) and every open

cover X = U1 [ U2 [ · · · [ U
r

there exist U 2 {U1, . . . ,Ur

} and
y 2 N such that

A�1
y

U \M�1
y

U 6= ;

Equivalently
M

y

A�y

U \ U 6= ;.

Idea

Find a sequence B1,B2, . . . of non-empty sets such that

I Each B
i

is contained in a single color U
j

;

I For every i < j there is y 2 N such that B
j

⇢ M
y

A�y

(B
i

)
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We want to find a sequence B1,B2, . . . of non-empty sets such
that

I Each B
i

is contained in a single color;

I For every i < j there is y 2 N such that B
j

⇢ M
y

A�y

(B
i

)

To run the iterative construction
we use the following version of
van der Waerden’s theorem:

Theorem

Let (X , (T
g

)
g2A�

N
) be a “nice”

topological system and B ⇢ X
open and non-empty. Then for
every k 2 N there exists y 2 N
such that

B\A�y

B\A�2yB\· · ·\A�ky

B 6= ;
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Questions?


