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Introduction

m We will discuss the approximate Ramsey property (ARP) of
several classes of finite dimensional normed spaces, including
The class of all finite dimensional normed spaces;
the class of all finite dimensional subspaces of L, [0, 1];
the class {{} }nen;
the class of polyhedral spaces.

m Our proof of the (ARP) of {2 },,en uses the Dual Ramsey
Theorem by Graham ad Rothschild, while the (ARP) of {£}},en,
p # 2,00 can be proved by the version of the Dual Ramsey
Theorem for equipartitions (open) or its approximate version
(true, with a non-combinatorial proof).
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Introduction

= In a precise way, the (ARP) of the classes {{} },en can be seen as
the factorization theorem for Grassmannians over R, C that
corresponds to the Graham-Leeb-Rothschild Theorem on
Grassmannians over a finite field;

m the (ARP) with a multidimensional version of the Borsuk-Ulam
Theorem.

This is a joint work with D Bartosova, M. Lupini and B. Mbombo, and
V. Ferenczi, B. Mbombo and S. Todorcevic.
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The Approximate Ramsey Property

Some basics

A normed space is a vector space X (over F =R, C) together with
anorm || - || : X — [0,00[; when || - || is complete, X is a Banach
space;

Given n € N, 1 < p < oo, let £ := (F", || - [ ),

1(25)7=1llp == (X; layP)V/P, and €2, = (F™, || - [|o),

1()7=1 loo := max; |ay];

Sy ={zeX : |z| =1}, Bx :={x € X : ||z| <1} are the unit
ball of X and the unit sphere of X, respectively;

Given X, Y let (};) be the collection of all subspaces of Y isometric
to X. When X is finite dimensional, its unit ball is compact; We
endow (};) with with the Hausdorff metric metric on it:

d(Xo, X1) = i - i -
(Xo, X1) max{xgelgiomggl @0 “”Y’xfé%f{lx;?ﬁo |1 =0y }

UfRaDy
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1-Lipschitz mapping ¢ : X — [0, 1].

Definition

A collection F of finite dimensional normed spaces has the weak

Approximate Ramsey Property (ARP) when for every F,G € . and

e > 0 there exists H € % such that
H— (G)F

€

that is, every continuous coloring ¢ of (I;) e-stabilizes in (g) for some
G e (g), i.e.,




The Approximate Ramsey Property

Some basics

m given two Banach spaces X and Y, an isometric embedding is a
linear map 7' : X — Y such that ||Tz|ly = ||z| x; let Emb(X,Y)
be the space of all isometric embeddings from X into Y endowed
with the operator distance:

d(T,U) =T = Ul := sup [T(x) = U(z)lly-

llzllx <1
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ARP for finite dimensional normed spaces

Definition
A collection F of finite dimensional normed spaces has the
Approzimate Ramsey Property (ARP) when for every F,G € F and
e > 0 there exists H € . such that every continuous coloring ¢ of
Emb(F, H) e-stabilizes in p o Emb(F,G) for some p € Emb(G, H), that
is,

osc(c | oo Emb(F,G)) < e.

This is a particular instance of a more general definition for metric
structures.




Examples

Theorem

The following classes have the approzimate Ramsey property:




Examples

Theorem

The following classes have the approzimate Ramsey property:

The finite dimensional Hilbert spaces (or, equivalently, the finite
dimensional subspaces of l2) (Gromov-Milman);




I'he Approximate Ramsey Property

Examples

Theorem
The following classes have the approzimate Ramsey property:

The finite dimensional Hilbert spaces (or, equivalently, the finite
dimensional subspaces of l2) (Gromov-Milman);

The finite dimensional subspaces of L,[0,1], for p # 4,6,8,...,00
(Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);




I'he Approximate Ramsey Property

Examples

Theorem
The following classes have the approzimate Ramsey property:

The finite dimensional Hilbert spaces (or, equivalently, the finite
dimensional subspaces of l2) (Gromov-Milman);

The finite dimensional subspaces of L,[0,1], for p # 4,6,8,...,00
(Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);

{65 }nen; p # 2,00 (Giordano-Pestov; F-LA-Mb-T);




Examples

Theorem

The following classes have the approzimate Ramsey property:

The finite dimensional Hilbert spaces (or, equivalently, the finite
dimensional subspaces of l2) (Gromov-Milman);

The finite dimensional subspaces of L,[0,1], for p # 4,6,8,...,00
(Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);

{65 }nen; p # 2,00 (Giordano-Pestov; F-LA-Mb-T);
{2 }n>0 (Bartosovd-LA-Lupini-Mbombo);




Examples

Theorem
The following classes have the approzimate Ramsey property:

The finite dimensional Hilbert spaces (or, equivalently, the finite
dimensional subspaces of l2) (Gromov-Milman);

The finite dimensional subspaces of L,[0,1], for p # 4,6,8,...,00
(Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);

{65 }nen; p # 2,00 (Giordano-Pestov; F-LA-Mb-T);
{2 }n>0 (Bartosovd-LA-Lupini-Mbombo);
The class of finite dimensional polyhedral spaces (B-LA-L-Mb);

November 23rd



Examples

Theorem
The following classes have the approzimate Ramsey property:
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The finite dimensional subspaces of L,[0,1], for p # 4,6,8,...,00
(Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);

{65 }nen; p # 2,00 (Giordano-Pestov; F-LA-Mb-T);

{2 }n>0 (Bartosovd-LA-Lupini-Mbombo);

The class of finite dimensional polyhedral spaces (B-LA-L-Mb);
The class of all finite dimensional normed spaces (B-LA-L-Mb).
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Previous Known results

Odell-Rosenthal-Schlumprecht proved that for every 1 < p < oo,
every m € N and every € > 0 there is n € N such that

el
by — (6))"s
Their proof uses tools from Banach space theory (like

unconditionality) to find many symmetries;

Gowers has an improvement for p = oo;

Matousek-Rodl proved the first result for 1 < p < oo
combinatorially (using spreads).
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Definition

A Banach space X is called approximately ultrahomogeneous (aUH)
when for every finite dimensional subspace F' of X, every € > 0 and
every isometric embedding v : F' — X there is some global isometry [
of X such that |[I | F — | <e.

Examples of (aUH) are

m (y;
m L,[0,1] (Lusky) p #4,6,8,...;
m The Gurarij space.
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Consequences in topological dynamics

Theorem (metric Kechris-Pestov-Todorcevic correspondence)
Suppose that X is (aUH). TFAE:

m The group of isometries Iso(X) with its strong operator topology is
extremely amenable;

m The class Age(X) of finite dimensional subspaces of X has the
(ARP).
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The intention is to relate our result with the Borsuk-Ulam Theorem.
Recall that one of the several equivalent versions
(Lusternik-Schnirelmann Theorem) of the Borsuk-Ulam theorem states
that if the unit sphere S™ of K;'H is covered by n + 1 many open sets,
then one of them contains a point x and its antipodal —zx.

Definition

Let (X,d) be a metric space, € > 0. We say that an open covering %
of X is e-fat when {U_.}yeq is still a covering of X.

It is not difficult to see that if X is compact, then every open covering
is e-fat for some € > 0.




Theorem (ARP for {£}},,)

For every 1 < p < oo, every integers d,m and r and every € > 0 there
is some n,(d, m,r,€) such that for every e-fat open covering % of
Emb(ﬁg,fg) with cardinality at most r there exists o € Emb(£", 1)
such that
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Theorem (ARP for {£}},,)

For every 1 < p < oo, every integers d,m and r and every € > 0 there
is some n,(d, m,r,€) such that for every e-fat open covering % of
Emb(ﬁg, y) with cardinality at most r there exists ¢ € Emb(£}', ()
such that

0o Emb(ﬁg,fz,”) CU for someU € % .

Borsuk-Ulam Theorem is the statement
n,(1,1,r,e) =r for all ¢ > 0,

because Emb (£}, £7) = S, and Emb((),£;) = {£Id r}

Problem

Does there exists ny(d, m,r,€) independent of €%
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Hints of the proofs. p = 2:

Gromov and Milman proved that the unitary group U = Iso({2) is
a Lévy group (concentration of measure), hence extremely
amenable;

£y is obviously ultrahomogeneous;
By the KPT correspondence, we have the (ARP) of Age(¢3), and
(trivially) of {3 }en.
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topologically isomorphic to the semidirect product of
L°([0,1],{~1,1}) and the non-singular transformations
Aut*([0,1]); both of them are Lévy (Giordano-Pestov), so
Iso(L,[0,1]) is extremely amenable; notice that all the groups are
topologically isomorphic;




Hints of the proofs. p # 2, co:

For 1 < p # 2, 00, the group Iso(L,[0,1]) is, by Banach-Lamperti,
topologically isomorphic to the semidirect product of
L°([0,1],{~1,1}) and the non-singular transformations
Aut*([0,1]); both of them are Lévy (Giordano-Pestov), so
Iso(L,[0,1]) is extremely amenable; notice that all the groups are
topologically isomorphic;

Lusky proved that L,[0,1], p # 4,6,8,...,00 is (aUH); this gives
the (ARP) of Age(L,[0,1]) for those p’s.
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Hints of the proofs. p # 2, co:

All Ly[0,1] are approximately homogeneous for {/} },;

Schechtman proved that for small enough § > 0, d-isometric
embeddings between £})’s are close to isometric embeddings;

the (EA) of Iso(L,[0,1]) and the previous two facts give that {(}},
has the (ARP) for all 1 < p < o0;

When p =4,6,8,... there are arbitrarily large finite dimensional
subspaces X of L, well complemented in L, having isometric
copies badly complemented. The coloring asking if a copy of
Xe (Z;} ) is well or badly complemented is a bad (discrete)

\x
coloring.
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Hints of the proofs. p = 0o

The proof by B-LA-L-Mb goes as follows:

First of all, one establishes the (ARP) of {¢Z},, as a consequence
of the Dual Ramsey Theorem by Graham and Rothschild;
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Hints of the proofs. p = oo

The proof by B-LA-L-Mb goes as follows:

First of all, one establishes the (ARP) of {¢Z},, as a consequence
of the Dual Ramsey Theorem by Graham and Rothschild;

Then one proves the (ARP) of the class of finite dimensional
polyhedral spaces Pol; recall that a f.d. polyhedral space is a space
whose unit ball is a polytope, i.e. it has finitely many extreme
points; this is done by using the injective envelope of P: this is a
pair (v, ) such that yp : P — (2 is an isometric embedding
with the property that any other v : P — £ factors through vp;
this allows to reduce colorings of Emb(P, %) to colorings of

Emb (¢, 07).

oo 7 OO
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Hints of the proofs. p = 0o

An arbitrary f.d. space is limit of polyhedral spaces;

For every d,e > 0 and every f.d. X,Y there is some f.d. Z and an
isometric embedding I : Y — Z such that

T oEmbs(X,Y) C (Emb(X, Z))ets.




Che Approximate Ramsey Property [INNNICIIRTAN M.

The Dual Ramsey Theorem

Definition

Let (S,<g) and (T, <r) be two linearly ordered sets. A surjection
0:S — T is called a rigid-surjection when min @~ (tg) < min 01 (t1)
for every to <ty in T. Let Epi(S,T) be collection of all those
surjections.
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The Dual Ramsey Theorem

Definition

Let (S,<g) and (T, <r) be two linearly ordered sets. A surjection
0:S — T is called a rigid-surjection when min @~ (tg) < min 01 (t1)
for every to <ty in T. Let Epi(S,T) be collection of all those
surjections.

Theorem (Dual Ramsey Theorem; Graham and Rothschild)

For every finite linearly ordered sets S and T, and r € N there exists
n > #T such that every r-coloring of Epi(n, S) has a monochromatic
set of the form Epi(T,S) oo for some o € Epi(n,T).




The ARP of {£2 },en

Definition

Let &« be the collection of all n x k matrices representing (in the unit
bases of F¥ ad F™) a linear isometry between E’;o and (2.
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Definition

Let &« be the collection of all n x k matrices representing (in the unit
bases of F* ad F™) a linear isometry between E’;o and (2.

Proposition

A € &,k if and only if each column vector has oco-norm one and each
row vector has ¢1-norm at most 1.

UfRaD J. Lopez ac Novembe



The ARP of {£2 },en

Definition

Let &« be the collection of all n x k matrices representing (in the unit
bases of F* ad F™) a linear isometry between E’;o and (2.

Proposition

A € &,k if and only if each column vector has oco-norm one and each

row vector has ¢1-norm at most 1.

Given £ > 0, let .4 be a finite e-dense subset of the unit ball Be’f
containing 0 and the unit vectors u;, and

such that for every non-zero v € Belf there is w € .4 such that
lv — w1 < e and ||w|1 < ||v]:. e.g., for large le > 1,

N = ({ié}ismk N By




The ARP of {£2 },en

Let < be any total ordering on .4 such that v < w when ||v|[; < ||w]|1.
We order n canonically.
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The ARP of {£2 },en

Let < be any total ordering on .4 such that v < w when ||v|[; < ||w]|1.
We order n canonically.

Definition

Let @ : Epi(n, A") — &,xi be defined for o : {1,...,n} — A as the

n X k-matriz Ay whose &-row vector, 1 < & < n, is o(§).

It is easy to see that ®(o) € &, «. To simplify, suppose that F = R.

Proposition

There is a finite set I' C &, such that for every other A € &,«), there
erists B € I' such that

A'B = 1d;.
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We order now A := A4 x T" lexicographically, where A is arbitrarily
ordered. Given now k, m, a number of colors r, we use apply the DR
theorem to .4 and A to find the corresponding n.
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We order now A := A4 x T" lexicographically, where A is arbitrarily
ordered. Given now k, m, a number of colors r, we use apply the DR
theorem to .4 and A to find the corresponding n. Then n works:
Given c: &, — 7, we have the induced color

co® : Epi(n, ) = r

Let o € Epi(n,A) such that ¢ is constant on Epi(A, .4") o . Let now
R € &,xm be the matrix whose {-column is Av where o(§) = (v, A).

Proposition

For every B € &,,xq there exists o € Epi(A, A") such that
|IRB— ®(p00)|so < €.




We want to follow the same strategy than for p = co. Let é‘;fxd be the

collection of matrices that represent isometric embeddings from Kg into
¢y; they are characterized by the fact that each column vector is
p-normalized and on each row there is at most one non-zero entry.




We want to follow the same strategy than for p = co. Let é‘;fxd be the
collection of matrices that represent isometric embeddings from Kg into
¢y; they are characterized by the fact that each column vector is
p-normalized and on each row there is at most one non-zero entry.
Note that ® : Epi(n, 4") — 4, defined as above does not give
isometric embedding matrices (repeating rows will increase the p-norm
of the columns); this indicates that we have the p-normalize, and that
each repetition must have, up to ¢, the same cardinality;
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collection of matrices that represent isometric embeddings from Kg into
¢y; they are characterized by the fact that each column vector is
p-normalized and on each row there is at most one non-zero entry.
Note that ® : Epi(n, 4") — 4, defined as above does not give
isometric embedding matrices (repeating rows will increase the p-norm
of the columns); this indicates that we have the p-normalize, and that
each repetition must have, up to ¢, the same cardinality;

Definition

A mapping T :n — A is called an e-equipartition, € > 0 when

#%a—s) < HF(5) < #%um

for every 6 € A. Let Equi.(n,A) be the set of all e-equipartions, and
Equi(n, A) be the rigid-surjections (0-)equipartitions.
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Equipartitions

Theorem (Approximate Ramsey property for e-equipartitions)

Let d,m,r € N, g9 >0 and 1,0 > 0, and let €2 > 0 be such that

(1—e2)<(1—eg)(l—€1)<(1+4ep)(1+e1) <(l+e2). Then there is
n such that for every coloring c : Equi_,(n,d) — {1,...,r} there exists
R € Equi,, (n,m) and 1 < i <r such that

Equi,, (m,d) o R C (¢!

(4))2e0(1421)+8(140) -




Equipartitions

Theorem (Approximate Ramsey property for e-equipartitions)

Let d,m,r € N, g9 >0 and 1,0 > 0, and let €2 > 0 be such that
(1—e2)<(1—eg)(l—€1)<(1+4ep)(1+e1) <(l+e2). Then there is
n such that for every coloring c : Equi_,(n,d) — {1,...,r} there exists
R € Equi,, (n,m) and 1 < i <r such that

EQUieo (m7 d) oRC (Cil(i))250(1+51)+6(1+50)~

Problem (Dual Ramsey for equipartitions)

Suppose that dlm, and r is arbitrary. Does there exist m|n such that
every r-coloring of Equi(n,d) has a monochromatic set of the form
Equi(m,d) o o for some o € Equi(n,m)?




The Approximate

Ramsey Prope

Concentration

We prove the previous result by using concentration of measure of the
Hamming cube A™.

Definition

An mm space is a metric space with a (probability) measure on it.
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ax(e) i= 1 — inf{u(AL) : p(A) > %}.




Concentration

We prove the previous result by using concentration of measure of the
Hamming cube A™.

Definition
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Given such mm space (X,d, ), and € > 0, the concentration function

ax(e) i= 1 — inf{u(AL) : p(A) > %}.

A sequence (Xy,)n of mm-spaces is called Lévy when

ax, (g) —=n 1 for every e > 0,




Concentration

We prove the previous result by using concentration of measure of the
Hamming cube A™.

Definition

An mm space is a metric space with a (probability) measure on it.
Given such mm space (X,d, ), and € > 0, the concentration function

. 1
ax(e) :==1—inf{u(A4:) : p(4) > 5}
A sequence (Xy,)n of mm-spaces is called Lévy when

ax, (g) —=n 1 for every e > 0,

and normal Lévy when there are c1,co > 0 such that

ax, (&) < cre= @,




It is known that

oandp(e) < €75,

where d is the normalized Hamming distance

Af.9) = #(f £ 9)

and p is the normalized counting measure.




It is known that

oandp(e) < €75,

where d is the normalized Hamming distance

Af.9) = #(f £ 9)

and p is the normalized counting measure.

Proposition

(Equi.(n, A),d, u), is asymptotically normal Lévy.
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DRT and Boolean Matrices

Rephrasing the Dual Ramsey Theorem

We say that 0 — 1-valued n x k-matrix is boolean if the column vectors

are non null and the supports of column vectors of A form a partition
of the target set n.
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Rephrasing the Dual Ramsey Theorem

We say that 0 — 1-valued n x k-matrix is boolean if the column vectors
are non null and the supports of column vectors of A form a partition
of the target set n.
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1 00
010
0 01
010
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Rephrasing the Dual Ramsey Theorem

We say that 0 — 1-valued n x k-matrix is boolean if the column vectors
are non null and the supports of column vectors of A form a partition
of the target set n.

100
1 00
010
0 01
010

We denote them by Jfﬁ - We call a boolean matrix A ordered when

the support of the i column of A starts before the support of the
(i + 1)™ column of A.
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Rephrasing the Dual Ramsey Theorem

We say that 0 — 1-valued n x k-matrix is boolean if the column vectors
are non null and the supports of column vectors of A form a partition
of the target set n.

OO O = =
_— o = OO
o O oo

We denote them by Jfﬁ - We call a boolean matrix A ordered when
the support of the i column of A starts before the support of the

(i + 1) column of A. Given a boolean n x k-matrix, let corr(A) € Sy
be the unique permutation matrix (i.e. automorphism of the Boolean
algebra Z(k)) such that A - corr(A) is ordered.
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0-1 valued matrices

Proposition (DRT, embedding version)

For every k,m and r there is n > k such that every r-coloring
Jbak — r factors
. b2

mX

COrT Q %\

Sk

C
k4>7’

for some ordered boolean n X m-matriz R. Observe that

corr(R - A) = corr(A).
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Matrices over a finite field F

Let Z,«k(F) be the collection of n x k-matrices of rank k.
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Matrices over a finite field F

Let Z,«k(F) be the collection of n x k-matrices of rank k.

Given A € 7,1 (F), let red(A) € GL(F*) be such that A -red(A) is in
Reduced Column Echelon Form (RCEF).
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Matrices over a finite field F

Let Z,«k(F) be the collection of n x k-matrices of rank k.
Given A € 7,1 (F), let red(A) € GL(F*) be such that A -red(A) is in
Reduced Column Echelon Form (RCEF).

000 -+ --- 0
0 0 0 0
1 0 0 - 0
* 0 0 0
* 0 0
01 0 0

* 0 0
* 0 0 0
* 0 1 0
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Theorem

For every k,m € N and r € N there exists n > k such that every coloring
¢: Inxi(F) = r factors

R'jmxk

rean O

<3
o)

for some R € Zpym(F) in RCEF.
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Theorem

For every k,m € N and r € N there exists n > k such that every coloring
¢: Inxi(F) = r factors

R‘jmxk T
e, O |a

GL(F¥)

for some R € £, xm(F) in RCEF.
Observe that red(R - A) = red(4) if R is in RCEF.
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Matrices and Grassmannians over a finite field

Theorem

For every k,m € N and r € N there exists n > k such that every coloring
¢: Inxi(F) = r factors

R'jmxk

» o|

o)

for some R € £, xm(F) in RCEF.
Observe that red(R - A) = red(4) if R is in RCEF.

Theorem (Graham-Leeb-Rothschild)

Suppose that F is a finite field. For every k,m € N and r € N there exists
n >k such that every r-coloring of Gr(k,F™), the k-Grassmannians of F™,
has a monochromatic set of the form Gr(k,V') for some V € Gr(m,F™).
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What for full rank matrices with entries in R, C?

There is a natural factorization result, but now approximative. The set
of matrices is endowed with natural metrics, to each full-rank matrix A
we associate a norm 7(A). It is proved that this mapping, with the
right metrics is 1-Lipschitz. We obtain a factorization theorem for full
rank matrices.
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The Factorization theorem for Grassmannians is more geometrical:
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The Factorization theorem for Grassmannians is more geometrical:

L,[0,1] if 1 <p< oo,

m Let Fp = { G the Gurarij space if p = oo.
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The Factorization theorem for Grassmannians is more geometrical:

L,[0,1] if1<p< oo,
G the Gurarij space if p = co.

I

lLetEp:{

m Let .4, be the polish space of all norms on F*, and let P be the
set of all norms N € .#; such that (F¥, N') can be isometrically
embedded into E,. GL(F*) acts on A, A- N(z) := N(A1x);
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The Factorization theorem for Grassmannians is more geometrical:

L,[0,1] if1<p< oo,
G the Gurarij space if p = co.

I

lLetEp:{

m Let .4, be the polish space of all norms on F*, and let P be the
set of all norms N € .#; such that (F¥, N') can be isometrically
embedded into E,. GL(F*) acts on A, A- N(z) := N(A1x);

m The metric

w(M, N) := log(max{||Id |[gx ar) @x ny,» 1 [[@r 3y @* 00y }) s &
compatible GL(F¥)-metric on A%;
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The Factorization theorem for Grassmannians is more geometrical:

L,[0,1] if1<p< oo,
G the Gurarij space if p = co.

I

lLetEp:{

m Let .4, be the polish space of all norms on F*, and let P be the
set of all norms N € .#; such that (F¥, N') can be isometrically
embedded into E,. GL(F*) acts on A, A- N(z) := N(A1x);

m The metric

w(M, N) := log(max{||Id |[gx ar) @x ny,» 1 [[@r 3y @* 00y }) s &
compatible GL(F¥)-metric on A%;

m The k-Banach-Mazur compactum %, is the orbit space
(M) JJGL(EY). Let 22 := (A7, ) /GL(FY);




Graham-Leeb-Rothschild for R, Matrices and Grassmannians over the field R, C

The Factorization theorem for Grassmannians is more geometrical:

L,[0,1] if1<p< oo,
G the Gurarij space if p = co.

I

lLetEp:{

m Let .4, be the polish space of all norms on F*, and let P be the
set of all norms N € .#; such that (F¥, N') can be isometrically
embedded into E,. GL(F*) acts on A, A- N(z) := N(A1x);

m The metric

w(M, N) := log(max{||Id |[gx ar) @x ny,» 1 [[@r 3y @* 00y }) s &
compatible GL(F¥)-metric on A%;

m The k-Banach-Mazur compactum %, is the orbit space
(i) JJGL(EY). Let 27 i= (P, ) J/GL(EY);

m We define the p-gap (opening) metric A,(V, W) between
V,W € Gr(k,F") as the Hausdorff distance (with respect to M)
between the unit balls of (V|| - [|,) and (W, | - |[,).
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m the p-Kadets metric is the compatible Gromov-Hausdorff distance
on A% defined by

(M, N) := %n[fj’ A(TX,UY)

where the infimum runs over all isometric embeddings
T :(F*, M) — E,, U: (Fk,N) — E,.
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m the p-Kadets metric is the compatible Gromov-Hausdorff distance
on A% defined by

(M, N) := %n[fj’ A(TX,UY)

where the infimum runs over all isometric embeddings
T :(F*, M) — E,, U: (Fk,N) — E,.

m Let 7, : (Gr(k,F™),A,) — (%%, 7p) be the 1-Lipschitz map that
assigns to V' € Gr(k,F") the “isometric type” of (V.| - |p)-
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The mapping 7y for the sup norm

Given a Plane (so k = 2)

UfRaD



The mapping 7y for the sup norm

we consider its section with the cube
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The mapping 7y for the sup norm

Another section with the same shape
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The mapping 7y for the sup norm
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GLR for F = R,C

Theorem (GLR Theorem for R, p-version)

Let p # 4,6,8,.... For every k,m € > 0 and every (K,dx) compact
metric there is n such that for every 1-Lipschitz coloring
c: (Gr(k,F"),Ap) = (K, dg) there is some R € Gr(m,F"™) such that

(R, || - llp) is isometric to €)', and a 1-Lipschitz ¢ : (A, ~,) = (K, dk)
such that

Gr(k, R) C K
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GLR Theorem for R, C, Euclidean version

Theorem

For every k,m, C >0, € > 0 and every (K, dx) compact metric there
is n > k such that for every norm M on R™, every C-Lipschitz coloring
of (Gr(k,R™),Ap) by (K, dk) e-stabilizes in some Gr(k, V'), that is,
there exists V € Gr(m,F") such that

diamg (¢(Gr(k,V))) < e
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GLR Theorem for R, C, Euclidean version

Theorem

For every k,m, C >0, € > 0 and every (K, dx) compact metric there
is n > k such that for every norm M on R™, every C-Lipschitz coloring
of (Gr(k,R™),Ap) by (K, dk) e-stabilizes in some Gr(k, V'), that is,
there exists V € Gr(m,F") such that

diamg (¢(Gr(k,V))) < e

This is consequence of Dvoretzky’s Theorem and the GLR Theorem for
p=2.
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Thank Youl

Novembe
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