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Introduction

We will discuss the approximate Ramsey property (ARP) of
several classes of finite dimensional normed spaces, including

1 The class of all finite dimensional normed spaces;
2 the class of all finite dimensional subspaces of Lp[0, 1];
3 the class {`np}n∈N;
4 the class of polyhedral spaces.

Our proof of the (ARP) of {`n∞}n∈N uses the Dual Ramsey
Theorem by Graham ad Rothschild, while the (ARP) of {`np}n∈N,
p 6= 2,∞ can be proved by the version of the Dual Ramsey
Theorem for equipartitions (open) or its approximate version
(true, with a non-combinatorial proof).
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Introduction

In a precise way, the (ARP) of the classes {`np}n∈N can be seen as
the factorization theorem for Grassmannians over R,C that
corresponds to the Graham-Leeb-Rothschild Theorem on
Grassmannians over a finite field;

the (ARP) with a multidimensional version of the Borsuk-Ulam
Theorem.

This is a joint work with D Bartosova, M. Lupini and B. Mbombo, and
V. Ferenczi, B. Mbombo and S. Todorcevic.
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The Approximate Ramsey Property

Some basics

A normed space is a vector space X (over F = R,C) together with
a norm ‖ · ‖ : X → [0,∞[; when ‖ · ‖ is complete, X is a Banach
space;

Given n ∈ N, 1 ≤ p <∞, let `np := (Fn, ‖ · ‖p),
‖(xj)nj=1‖p := (

∑
j |aj |p)1/p, and `n∞ := (Fn, ‖ · ‖∞),

‖(xj)nj=1‖∞ := maxj |aj |;
SX = {x ∈ X : ‖x‖ = 1}, BX := {x ∈ X : ‖x‖ ≤ 1} are the unit
ball of X and the unit sphere of X, respectively;

Given X,Y let
(
Y
X

)
be the collection of all subspaces of Y isometric

to X. When X is finite dimensional, its unit ball is compact; We
endow

(
Y
X

)
with with the Hausdorff metric metric on it:

d(X0, X1) = max{ max
x0∈BX0

min
x1∈BX1

‖x0−x1‖Y , max
x1∈BX1

min
x0∈BX0

‖x1−x0‖Y }
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The Approximate Ramsey Property

wARP for finite dimensional normed spaces

By a continuous coloring of a metric space (X, d) we mean a
1-Lipschitz mapping c : X → [0, 1].

Definition

A collection F of finite dimensional normed spaces has the weak
Approximate Ramsey Property (ARP) when for every F,G ∈ F and
ε > 0 there exists H ∈ F such that

H −→ (G)Fε ,

that is, every continuous coloring c of
(
H
F

)
ε-stabilizes in

(
Ĝ
F

)
for some

Ĝ ∈
(
H
G

)
, i.e.,

osc(c �

(
Ĝ

F

)
) = sup

F0,F1∈(ĜF)

|c(F0)− c(F1)| < ε.
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Ĝ ∈
(
H
G

)
, i.e.,

osc(c �

(
Ĝ
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The Approximate Ramsey Property

Some basics

given two Banach spaces X and Y , an isometric embedding is a
linear map T : X → Y such that ‖Tx‖Y = ‖x‖X ; let Emb(X,Y )
be the space of all isometric embeddings from X into Y endowed
with the operator distance:

d(T,U) = ‖T − U‖ := sup
‖x‖X≤1

‖T (x)− U(x)‖Y .
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The Approximate Ramsey Property

ARP for finite dimensional normed spaces

Definition

A collection F of finite dimensional normed spaces has the
Approximate Ramsey Property (ARP) when for every F,G ∈ F and
ε > 0 there exists H ∈ F such that every continuous coloring c of
Emb(F,H) ε-stabilizes in % ◦ Emb(F,G) for some % ∈ Emb(G,H), that
is,

osc(c � % ◦ Emb(F,G)) < ε.

This is a particular instance of a more general definition for metric
structures.
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The Approximate Ramsey Property

Examples

Theorem

The following classes have the approximate Ramsey property:

1 The finite dimensional Hilbert spaces (or, equivalently, the finite
dimensional subspaces of `2) (Gromov-Milman);

2 The finite dimensional subspaces of Lp[0, 1], for p 6= 4, 6, 8, . . . ,∞
(Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);

3 {`np}n∈N, p 6= 2,∞ (Giordano-Pestov; F-LA-Mb-T);

4 {`n∞}n≥0 (Bartošová-LA-Lupini-Mbombo);

5 The class of finite dimensional polyhedral spaces (B-LA-L-Mb);

6 The class of all finite dimensional normed spaces (B-LA-L-Mb).
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4 {`n∞}n≥0 (Bartošová-LA-Lupini-Mbombo);

5 The class of finite dimensional polyhedral spaces (B-LA-L-Mb);

6 The class of all finite dimensional normed spaces (B-LA-L-Mb).

UfRaDy J. Lopez-Abad November 23rd



The Approximate Ramsey Property

Examples

Theorem

The following classes have the approximate Ramsey property:

1 The finite dimensional Hilbert spaces (or, equivalently, the finite
dimensional subspaces of `2) (Gromov-Milman);

2 The finite dimensional subspaces of Lp[0, 1], for p 6= 4, 6, 8, . . . ,∞
(Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);

3 {`np}n∈N, p 6= 2,∞ (Giordano-Pestov; F-LA-Mb-T);
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The Approximate Ramsey Property

Previous Known results

1 Odell-Rosenthal-Schlumprecht proved that for every 1 ≤ p ≤ ∞,
every m ∈ N and every ε > 0 there is n ∈ N such that

`np −→ (`mp )
`1p
ε ;

Their proof uses tools from Banach space theory (like
unconditionality) to find many symmetries;

2 Gowers has an improvement for p =∞;

3 Matoušek-Rödl proved the first result for 1 ≤ p <∞
combinatorially (using spreads).
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The Approximate Ramsey Property

Consequences in topological dynamics

Definition

A Banach space X is called approximately ultrahomogeneous (aUH)
when for every finite dimensional subspace F of X, every ε > 0 and
every isometric embedding γ : F → X there is some global isometry I
of X such that ‖I � F − γ‖ < ε.

Examples of (aUH) are

`2;

Lp[0, 1] (Lusky) p 6= 4, 6, 8, . . . ;

The Gurarij space.
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The Approximate Ramsey Property

Consequences in topological dynamics

Theorem (metric Kechris-Pestov-Todorcevic correspondence)

Suppose that X is (aUH). TFAE:

The group of isometries Iso(X) with its strong operator topology is
extremely amenable;

The class Age(X) of finite dimensional subspaces of X has the
(ARP).
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The Approximate Ramsey Property

ARP for {`np}n is a multidim Borsuk-Ulam

The intention is to relate our result with the Borsuk-Ulam Theorem.

Recall that one of the several equivalent versions
(Lusternik-Schnirelmann Theorem) of the Borsuk-Ulam theorem states
that if the unit sphere Sn of `n+1

2 is covered by n+ 1 many open sets,
then one of them contains a point x and its antipodal −x.

Definition

Let (X, d) be a metric space, ε > 0. We say that an open covering U
of X is ε-fat when {U−ε}U∈U is still a covering of X.

It is not difficult to see that if X is compact, then every open covering
is ε-fat for some ε > 0.
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The Approximate Ramsey Property

Theorem (ARP for {`np}n)

For every 1 ≤ p ≤ ∞, every integers d,m and r and every ε > 0 there
is some np(d,m, r, ε) such that for every ε-fat open covering U of
Emb(`dp, `

n
p ) with cardinality at most r there exists % ∈ Emb(`mp , `

n
p )

such that

% ◦ Emb(`dp, `
m
p ) ⊆ U for some U ∈ U .

Borsuk-Ulam Theorem is the statement

np(1, 1, r, ε) = r for all ε > 0,

because Emb(`1p, `
r
p) = Sr−1

p , and Emb(`1p, `
1
p) = {±Id R}

Problem

Does there exists np(d,m, r, ε) independent of ε?
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The Approximate Ramsey Property

Hints of the proofs. p = 2:

1 Gromov and Milman proved that the unitary group U = Iso(`2) is
a Lévy group (concentration of measure), hence extremely
amenable;

2 `2 is obviously ultrahomogeneous;

3 By the KPT correspondence, we have the (ARP) of Age(`2), and
(trivially) of {`n2}n∈N.
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The Approximate Ramsey Property

Hints of the proofs. p 6= 2,∞:

1 For 1 ≤ p 6= 2,∞, the group Iso(Lp[0, 1]) is, by Banach-Lamperti,
topologically isomorphic to the semidirect product of
L0([0, 1], {−1, 1}) and the non-singular transformations
Aut∗([0, 1]); both of them are Lévy (Giordano-Pestov), so
Iso(Lp[0, 1]) is extremely amenable; notice that all the groups are
topologically isomorphic;

2 Lusky proved that Lp[0, 1], p 6= 4, 6, 8, . . . ,∞ is (aUH); this gives
the (ARP) of Age(Lp[0, 1]) for those p’s.
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The Approximate Ramsey Property

Hints of the proofs. p 6= 2,∞:

1 All Lp[0, 1] are approximately homogeneous for {`np}n;

2 Schechtman proved that for small enough δ > 0, δ-isometric
embeddings between `np ’s are close to isometric embeddings;

3 the (EA) of Iso(Lp[0, 1]) and the previous two facts give that {`np}n
has the (ARP) for all 1 ≤ p <∞;

4 When p = 4, 6, 8, . . . there are arbitrarily large finite dimensional
subspaces X of Lp well complemented in Lp having isometric
copies badly complemented. The coloring asking if a copy of
X̂ ∈

(`np
X

)
is well or badly complemented is a bad (discrete)

coloring.
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The Approximate Ramsey Property

Hints of the proofs. p =∞

The proof by B-LA-L-Mb goes as follows:

1 First of all, one establishes the (ARP) of {`n∞}n as a consequence
of the Dual Ramsey Theorem by Graham and Rothschild;

2 Then one proves the (ARP) of the class of finite dimensional
polyhedral spaces Pol; recall that a f.d. polyhedral space is a space
whose unit ball is a polytope, i.e. it has finitely many extreme
points; this is done by using the injective envelope of P : this is a
pair (γ, `nP∞ ) such that γP : P → `nP∞ is an isometric embedding
with the property that any other γ : P → `n∞ factors through γP ;
this allows to reduce colorings of Emb(P, `n∞) to colorings of
Emb(`nP∞ , `n∞).
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The Approximate Ramsey Property

Hints of the proofs. p =∞

3 An arbitrary f.d. space is limit of polyhedral spaces;

4 For every δ, ε > 0 and every f.d. X,Y there is some f.d. Z and an
isometric embedding I : Y → Z such that

I ◦ Embδ(X,Y ) ⊆ (Emb(X,Z))ε+δ.
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The Approximate Ramsey Property The ARP of {`n∞}n∈N

The Dual Ramsey Theorem

Definition

Let (S,<S) and (T,<T ) be two linearly ordered sets. A surjection
θ : S → T is called a rigid-surjection when min θ−1(t0) < min θ−1(t1)
for every t0 < t1 in T . Let Epi(S, T ) be collection of all those
surjections.

Theorem (Dual Ramsey Theorem; Graham and Rothschild)

For every finite linearly ordered sets S and T , and r ∈ N there exists
n ≥ #T such that every r-coloring of Epi(n, S) has a monochromatic
set of the form Epi(T, S) ◦ σ for some σ ∈ Epi(n, T ).
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The Approximate Ramsey Property The ARP of {`n∞}n∈N

Definition

Let En×k be the collection of all n× k matrices representing (in the unit
bases of Fk ad Fn) a linear isometry between `k∞ and `n∞.

Proposition

A ∈ En×k if and only if each column vector has ∞-norm one and each
row vector has `1-norm at most 1.

Given ε > 0, let N be a finite ε-dense subset of the unit ball B`k1
1 containing 0 and the unit vectors ui, and

2 such that for every non-zero v ∈ B`k1 there is w ∈ N such that

‖v − w‖1 < ε and ‖w‖1 < ‖v‖1. e.g., for large lε ≥ 1,

N = ({± i

kl
}i≤kl)k ∩B`k1
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The Approximate Ramsey Property The ARP of {`n∞}n∈N

Let < be any total ordering on N such that v < w when ‖v‖1 < ‖w‖1.
We order n canonically.

Definition

Let Φ : Epi(n,N )→ En×k be defined for σ : {1, . . . , n} → N as the
n× k-matrix Aσ whose ξ-row vector, 1 ≤ ξ ≤ n, is σ(ξ).

It is easy to see that Φ(σ) ∈ En×k. To simplify, suppose that F = R.

Proposition

There is a finite set Γ ⊆ En×k such that for every other A ∈ En×k there
exists B ∈ Γ such that

AtB = Idk.
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The Approximate Ramsey Property The ARP of {`n∞}n∈N

We order now ∆ := N × Γ lexicographically, where ∆ is arbitrarily
ordered. Given now k,m, a number of colors r, we use apply the DR
theorem to N and ∆ to find the corresponding n.

Then n works:
Given c : En×k → r, we have the induced color

c ◦ Φ : Epi(n,N )→ r

Let % ∈ Epi(n,∆) such that c is constant on Epi(∆,N ) ◦ %. Let now
R ∈ En×m be the matrix whose ξ-column is Av where %(ξ) = (v,A).

Proposition

For every B ∈ Em×d there exists σ ∈ Epi(∆,N ) such that
‖RB − Φ(% ◦ σ)‖∞ < ε.

UfRaDy J. Lopez-Abad November 23rd



The Approximate Ramsey Property The ARP of {`n∞}n∈N

We order now ∆ := N × Γ lexicographically, where ∆ is arbitrarily
ordered. Given now k,m, a number of colors r, we use apply the DR
theorem to N and ∆ to find the corresponding n. Then n works:
Given c : En×k → r, we have the induced color

c ◦ Φ : Epi(n,N )→ r

Let % ∈ Epi(n,∆) such that c is constant on Epi(∆,N ) ◦ %. Let now
R ∈ En×m be the matrix whose ξ-column is Av where %(ξ) = (v,A).

Proposition

For every B ∈ Em×d there exists σ ∈ Epi(∆,N ) such that
‖RB − Φ(% ◦ σ)‖∞ < ε.

UfRaDy J. Lopez-Abad November 23rd



The Approximate Ramsey Property `np ’s, p 6= ∞

We want to follow the same strategy than for p =∞. Let E p
n×d be the

collection of matrices that represent isometric embeddings from `dp into
`np ; they are characterized by the fact that each column vector is
p-normalized and on each row there is at most one non-zero entry.

Note that Φ : Epi(n,N )→Mn×k defined as above does not give
isometric embedding matrices (repeating rows will increase the p-norm
of the columns); this indicates that we have the p-normalize, and that
each repetition must have, up to ε, the same cardinality;

Definition

A mapping T : n→ ∆ is called an ε-equipartition, ε ≥ 0 when

n

#∆
(1− ε) ≤ #F−1(δ) ≤ n

#∆
(1 + ε)

for every δ ∈ ∆. Let Equiε(n,∆) be the set of all ε-equipartions, and
Equi(n,∆) be the rigid-surjections (0-)equipartitions.
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The Approximate Ramsey Property `np ’s, p 6= ∞

Equipartitions

Theorem (Approximate Ramsey property for ε-equipartitions)

Let d,m, r ∈ N, ε0 ≥ 0 and ε1, δ > 0, and let ε2 ≥ 0 be such that
(1− ε2) ≤ (1− ε0)(1− ε1) ≤ (1 + ε0)(1 + ε1) ≤ (1 + ε2). Then there is
n such that for every coloring c : Equiε2(n, d)→ {1, . . . , r} there exists
R ∈ Equiε1(n,m) and 1 ≤ i ≤ r such that

Equiε0(m, d) ◦R ⊆ (c−1(i))2ε0(1+ε1)+δ(1+ε0).

Problem (Dual Ramsey for equipartitions)

Suppose that d|m, and r is arbitrary. Does there exist m|n such that
every r-coloring of Equi(n, d) has a monochromatic set of the form
Equi(m, d) ◦ σ for some σ ∈ Equi(n,m)?
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The Approximate Ramsey Property `np ’s, p 6= ∞

Concentration

We prove the previous result by using concentration of measure of the
Hamming cube ∆n.

Definition

An mm space is a metric space with a (probability) measure on it.

Given such mm space (X, d, µ), and ε > 0, the concentration function

αX(ε) := 1− inf{µ(Aε) : µ(A) ≥ 1

2
}.

A sequence (Xn)n of mm-spaces is called Lévy when

αXn(ε)→n 1 for every ε > 0,

and normal Lévy when there are c1, c2 > 0 such that

αXn(ε) ≤ c1e
−c2ε2n.
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The Approximate Ramsey Property `np ’s, p 6= ∞

It is known that
α(∆n,d,µ)(ε) ≤ e−

1
8
ε2n,

where d is the normalized Hamming distance

d(f, g) :=
1

n
#(f 6= g)

and µ is the normalized counting measure.

Proposition

(Equiε(n,∆), d, µ)n is asymptotically normal Lévy.
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Graham-Leeb-Rothschild for R,C DRT and Boolean Matrices

Rephrasing the Dual Ramsey Theorem

We say that 0− 1-valued n× k-matrix is boolean if the column vectors
are non null and the supports of column vectors of A form a partition
of the target set n.


1 0 0
1 0 0
0 1 0
0 0 1
0 1 0


We denote them by I ba

n×k. We call a boolean matrix A ordered when

the support of the ith column of A starts before the support of the
(i+ 1)th column of A. Given a boolean n× k-matrix, let corr(A) ∈ Sk
be the unique permutation matrix (i.e. automorphism of the Boolean
algebra P(k)) such that A · corr(A) is ordered.
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Graham-Leeb-Rothschild for R,C DRT and Boolean Matrices

0-1 valued matrices

Proposition (DRT, embedding version)

For every k,m and r there is n ≥ k such that every r-coloring
c : I ba

n×k → r factors

R ·I ba
m×k r

c

Sk

	corr ĉ

for some ordered boolean n×m-matrix R. Observe that
corr(R ·A) = corr(A).
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over a finite field

Matrices over a finite field F
Let In×k(F) be the collection of n× k-matrices of rank k.

Given A ∈ In×k(F), let red(A) ∈ GL(Fk) be such that A · red(A) is in
Reduced Column Echelon Form (RCEF).

0 0 0 · · · · · · 0
...

...
...

...
0 0 0 · · · · · · 0

1 0 0 · · · · · · 0

∗ 0 0 · · · · · · 0
...

...
...

...
∗ 0 0 · · · · · · 0
0 1 0 · · · · · · 0
∗ ∗ 0 · · · · · · 0
...

...
...

...
∗ ∗ 0 0 · · · 0
∗ ∗ 0 1 · · · 0
...

...
...

...
...
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over a finite field

Theorem
For every k,m ∈ N and r ∈ N there exists n ≥ k such that every coloring
c : In×k(F)→ r factors

R ·Im×k r
c

GL(Fk)

	red ĉ

for some R ∈ In×m(F) in RCEF.

Observe that red(R ·A) = red(A) if R is in RCEF.

Theorem (Graham-Leeb-Rothschild)

Suppose that F is a finite field. For every k,m ∈ N and r ∈ N there exists
n ≥ k such that every r-coloring of Gr(k,Fn), the k-Grassmannians of Fn,
has a monochromatic set of the form Gr(k, V ) for some V ∈ Gr(m,Fn).
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over the field R, C

What for full rank matrices with entries in R,C?

There is a natural factorization result, but now approximative. The set
of matrices is endowed with natural metrics, to each full-rank matrix A
we associate a norm τ(A). It is proved that this mapping, with the
right metrics is 1-Lipschitz. We obtain a factorization theorem for full
rank matrices.
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over the field R, C

The Factorization theorem for Grassmannians is more geometrical:

Let Ep =

{
Lp[0, 1] if 1 ≤ p <∞,
G the Gurarij space if p =∞. ;

Let Nk be the polish space of all norms on Fk, and let N p
k be the

set of all norms N ∈ Nk such that (Fk, N) can be isometrically
embedded into Ep. GL(Fk) acts on Nk, A ·N(x) := N(A−1x);

The metric
ω(M,N) := log(max{‖Id ‖(Fk,M),(Fk,N),, ‖Id ‖(Fk,N),(Fk,M)}) is a

compatible GL(Fk)-metric on Nk;

The k-Banach-Mazur compactum Bk is the orbit space
(Nk, ω)//GL(Fk). Let Bp

k := (N p
k , ω)//GL(Fk);

We define the p-gap (opening) metric Λp(V,W ) between
V,W ∈ Gr(k,Fn) as the Hausdorff distance (with respect to M)
between the unit balls of (V, ‖ · ‖p) and (W, ‖ · ‖p).
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over the field R, C

the p-Kadets metric is the compatible Gromov-Hausdorff distance
on Bp

k defined by

γp(M,N) := inf
T,U

Λp(TX,UY )

where the infimum runs over all isometric embeddings
T : (Fk,M)→ Ep, U : (Fk, N)→ Ep.

Let τp : (Gr(k,Fn),Λp)→ (Bp
k, γp) be the 1-Lipschitz map that

assigns to V ∈ Gr(k,Fn) the “isometric type” of (V, ‖ · ‖p).
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over the field R, C

The mapping τBM for the sup norm

Given a Plane (so k = 2)

UfRaDy J. Lopez-Abad November 23rd



Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over the field R, C

The mapping τBM for the sup norm

we consider its section with the cube
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The mapping τBM for the sup norm

Another section with the same shape
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The mapping τBM for the sup norm
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over the field R, C

GLR for F = R,C

Theorem (GLR Theorem for R, p-version)

Let p 6= 4, 6, 8, . . . . For every k,m ε > 0 and every (K, dK) compact
metric there is n such that for every 1-Lipschitz coloring
c : (Gr(k,Fn),Λp)→ (K, dK) there is some R ∈ Gr(m,Fn) such that
(R, ‖ · ‖p) is isometric to `mp , and a 1-Lipschitz ĉ : (Bp

k, γp)→ (K, dK)
such that

Gr(k,R) K
c

Bp
k

	ε
τp ĉ
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over the field R, C

GLR Theorem for R,C, Euclidean version

Theorem

For every k,m, C > 0, ε > 0 and every (K, dK) compact metric there
is n ≥ k such that for every norm M on Rn, every C-Lipschitz coloring
of (Gr(k,Rn),ΛM ) by (K, dK) ε-stabilizes in some Gr(k, V ), that is,
there exists V ∈ Gr(m,Fn) such that

diamK(c(Gr(k, V ))) < ε

This is consequence of Dvoretzky’s Theorem and the GLR Theorem for
p = 2.
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Graham-Leeb-Rothschild for R,C Matrices and Grassmannians over the field R, C

Thank You!
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