The approximate Ramsey property of classes of finite dimensional normed spaces

J. Lopez-Abad
UNED (Madrid) and Paris 7 (Paris).

Ultrafilters, Ramsey Theory and Dynamics
Lyon, November 23rd, 2017

Outline

1 Introduction

2 The Approximate Ramsey Property
■ The ARP of $\left\{\ell_{\infty}^{n}\right\}_{n \in \mathbb{N}}$

- ℓ_{p}^{n} 's, $p \neq \infty$

3 Graham-Leeb-Rothschild for \mathbb{R}, \mathbb{C}

- DRT and Boolean Matrices
- Matrices and Grassmannians over a finite field

■ Matrices and Grassmannians over the field \mathbb{R}, \mathbb{C}

■ We will discuss the approximate Ramsey property (ARP) of several classes of finite dimensional normed spaces, including

■ We will discuss the approximate Ramsey property (ARP) of several classes of finite dimensional normed spaces, including

1 The class of all finite dimensional normed spaces;

■ We will discuss the approximate Ramsey property (ARP) of several classes of finite dimensional normed spaces, including

1 The class of all finite dimensional normed spaces;
2 the class of all finite dimensional subspaces of $L_{p}[0,1]$;

■ We will discuss the approximate Ramsey property (ARP) of several classes of finite dimensional normed spaces, including

1 The class of all finite dimensional normed spaces;
2 the class of all finite dimensional subspaces of $L_{p}[0,1]$;
3 the class $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}$;

■ We will discuss the approximate Ramsey property (ARP) of several classes of finite dimensional normed spaces, including

1 The class of all finite dimensional normed spaces;
2 the class of all finite dimensional subspaces of $L_{p}[0,1]$;
3 the class $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}$;
4 the class of polyhedral spaces.

■ We will discuss the approximate Ramsey property (ARP) of several classes of finite dimensional normed spaces, including

1 The class of all finite dimensional normed spaces;
2 the class of all finite dimensional subspaces of $L_{p}[0,1]$;
3 the class $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}$;
4 the class of polyhedral spaces.
■ Our proof of the (ARP) of $\left\{\ell_{\infty}^{n}\right\}_{n \in \mathbb{N}}$ uses the Dual Ramsey Theorem by Graham ad Rothschild, while the (ARP) of $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}$, $p \neq 2, \infty$ can be proved by the version of the Dual Ramsey Theorem for equipartitions (open) or its approximate version (true, with a non-combinatorial proof).

- In a precise way, the (ARP) of the classes $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}$ can be seen as the factorization theorem for Grassmannians over \mathbb{R}, \mathbb{C} that corresponds to the Graham-Leeb-Rothschild Theorem on Grassmannians over a finite field;
- In a precise way, the (ARP) of the classes $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}$ can be seen as the factorization theorem for Grassmannians over \mathbb{R}, \mathbb{C} that corresponds to the Graham-Leeb-Rothschild Theorem on Grassmannians over a finite field;
- the (ARP) with a multidimensional version of the Borsuk-Ulam Theorem.
- In a precise way, the (ARP) of the classes $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}$ can be seen as the factorization theorem for Grassmannians over \mathbb{R}, \mathbb{C} that corresponds to the Graham-Leeb-Rothschild Theorem on Grassmannians over a finite field;
- the (ARP) with a multidimensional version of the Borsuk-Ulam Theorem.

This is a joint work with D Bartosova, M. Lupini and B. Mbombo, and V. Ferenczi, B. Mbombo and S. Todorcevic.

Some basics

- A normed space is a vector space X (over $\mathbb{F}=\mathbb{R}, \mathbb{C}$) together with a norm $\|\cdot\|: X \rightarrow[0, \infty[$; when $\|\cdot\|$ is complete, X is a Banach space;

Some basics

■ A normed space is a vector space X (over $\mathbb{F}=\mathbb{R}, \mathbb{C}$) together with a norm $\|\cdot\|: X \rightarrow[0, \infty[$; when $\|\cdot\|$ is complete, X is a Banach space;
■ Given $n \in \mathbb{N}, 1 \leq p<\infty$, let $\ell_{p}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{p}\right)$,
$\left\|\left(x_{j}\right)_{j=1}^{n}\right\|_{p}:=\left(\sum_{j}\left|a_{j}\right|^{p}\right)^{1 / p}$, and $\ell_{\infty}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{\infty}\right)$,
$\left\|\left(x_{j}\right)_{j=1}^{n}\right\|_{\infty}:=\max _{j}\left|a_{j}\right| ;$

Some basics

- A normed space is a vector space X (over $\mathbb{F}=\mathbb{R}, \mathbb{C}$) together with a norm $\|\cdot\|: X \rightarrow[0, \infty[$; when $\|\cdot\|$ is complete, X is a Banach space;
■ Given $n \in \mathbb{N}, 1 \leq p<\infty$, let $\ell_{p}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{p}\right)$, $\left\|\left(x_{j}\right)_{j=1}^{n}\right\|_{p}:=\left(\sum_{j}\left|a_{j}\right|^{p}\right)^{1 / p}$, and $\ell_{\infty}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{\infty}\right)$, $\left\|\left(x_{j}\right)_{j=1}^{n}\right\|_{\infty}:=\max _{j}\left|a_{j}\right| ;$
■ $S_{X}=\{x \in X:\|x\|=1\}, B_{X}:=\{x \in X:\|x\| \leq 1\}$ are the unit ball of X and the unit sphere of X, respectively;

Some basics

- A normed space is a vector space X (over $\mathbb{F}=\mathbb{R}, \mathbb{C}$) together with a norm $\|\cdot\|: X \rightarrow[0, \infty[$; when $\|\cdot\|$ is complete, X is a Banach space;
■ Given $n \in \mathbb{N}, 1 \leq p<\infty$, let $\ell_{p}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{p}\right)$, $\left\|\left(x_{j}\right)_{j=1}^{n}\right\|_{p}:=\left(\sum_{j}\left|a_{j}\right|^{p}\right)^{1 / p}$, and $\ell_{\infty}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{\infty}\right)$, $\left\|\left(x_{j}\right)_{j=1}^{n}\right\|_{\infty}:=\max _{j}\left|a_{j}\right| ;$
■ $S_{X}=\{x \in X:\|x\|=1\}, B_{X}:=\{x \in X:\|x\| \leq 1\}$ are the unit ball of X and the unit sphere of X, respectively;
- Given X, Y let $\binom{Y}{X}$ be the collection of all subspaces of Y isometric to X. When X is finite dimensional, its unit ball is compact; We endow $\binom{Y}{X}$ with with the Hausdorff metric metric on it:
$d\left(X_{0}, X_{1}\right)=\max \left\{\max _{x_{0} \in B_{X_{0}}} \min _{x_{1} \in B_{X_{1}}}\left\|x_{0}-x_{1}\right\|_{Y}, \max _{x_{1} \in B_{X_{1}}} \min _{x_{0} \in B_{X_{0}}}\left\|x_{1}-x_{0}\right\|_{Y}\right\}$

wARP for finite dimensional normed spaces

By a continuous coloring of a metric space (X, d) we mean a 1 -Lipschitz mapping $c: X \rightarrow[0,1]$.

wARP for finite dimensional normed spaces

By a continuous coloring of a metric space (X, d) we mean a 1 -Lipschitz mapping $c: X \rightarrow[0,1]$.

Definition

A collection \mathscr{F} of finite dimensional normed spaces has the weak Approximate Ramsey Property (ARP) when for every $F, G \in \mathscr{F}$ and $\varepsilon>0$ there exists $H \in \mathscr{F}$ such that

$$
H \longrightarrow(G)_{\varepsilon}^{F}
$$

wARP for finite dimensional normed spaces

By a continuous coloring of a metric space (X, d) we mean a 1 -Lipschitz mapping $c: X \rightarrow[0,1]$.

Definition

A collection \mathscr{F} of finite dimensional normed spaces has the weak Approximate Ramsey Property (ARP) when for every $F, G \in \mathscr{F}$ and $\varepsilon>0$ there exists $H \in \mathscr{F}$ such that

$$
H \longrightarrow(G)_{\varepsilon}^{F}
$$

that is, every continuous coloring c of $\binom{H}{F} \varepsilon$-stabilizes in $\binom{\widehat{G}}{F}$ for some $\widehat{G} \in\binom{H}{G}$, i.e.,

$$
\operatorname{osc}\left(c \upharpoonright\binom{\widehat{G}}{F}\right)=\sup _{F_{0}, F_{1} \in\binom{\widehat{G}}{F}}\left|c\left(F_{0}\right)-c\left(F_{1}\right)\right|<\varepsilon .
$$

Some basics

■ given two Banach spaces X and Y, an isometric embedding is a linear map $T: X \rightarrow Y$ such that $\|T x\|_{Y}=\|x\|_{X}$; let $\operatorname{Emb}(X, Y)$ be the space of all isometric embeddings from X into Y endowed with the operator distance:

$$
d(T, U)=\|T-U\|:=\sup _{\|x\|_{X} \leq 1}\|T(x)-U(x)\|_{Y}
$$

ARP for finite dimensional normed spaces

Definition

A collection \mathscr{F} of finite dimensional normed spaces has the Approximate Ramsey Property (ARP) when for every $F, G \in \mathscr{F}$ and $\varepsilon>0$ there exists $H \in \mathscr{F}$ such that every continuous coloring c of $\operatorname{Emb}(F, H) \varepsilon$-stabilizes in $\varrho \circ \operatorname{Emb}(F, G)$ for some $\varrho \in \operatorname{Emb}(G, H)$, that $i s$,

$$
\operatorname{osc}(c \upharpoonright \varrho \circ \operatorname{Emb}(F, G))<\varepsilon
$$

ARP for finite dimensional normed spaces

Definition

A collection \mathscr{F} of finite dimensional normed spaces has the Approximate Ramsey Property (ARP) when for every $F, G \in \mathscr{F}$ and $\varepsilon>0$ there exists $H \in \mathscr{F}$ such that every continuous coloring c of $\operatorname{Emb}(F, H) \varepsilon$-stabilizes in $\varrho \circ \operatorname{Emb}(F, G)$ for some $\varrho \in \operatorname{Emb}(G, H)$, that $i s$,

$$
\operatorname{osc}(c \upharpoonright \varrho \circ \operatorname{Emb}(F, G))<\varepsilon .
$$

This is a particular instance of a more general definition for metric structures.

Examples

Theorem
The following classes have the approximate Ramsey property:

Examples

Theorem

The following classes have the approximate Ramsey property:
1 The finite dimensional Hilbert spaces (or, equivalently, the finite dimensional subspaces of ℓ_{2}) (Gromov-Milman);

Examples

Theorem

The following classes have the approximate Ramsey property:
1 The finite dimensional Hilbert spaces (or, equivalently, the finite dimensional subspaces of ℓ_{2}) (Gromov-Milman);
2 The finite dimensional subspaces of $L_{p}[0,1]$, for $p \neq 4,6,8, \ldots, \infty$ (Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);

Examples

Theorem

The following classes have the approximate Ramsey property:
1 The finite dimensional Hilbert spaces (or, equivalently, the finite dimensional subspaces of ℓ_{2}) (Gromov-Milman);
2 The finite dimensional subspaces of $L_{p}[0,1]$, for $p \neq 4,6,8, \ldots, \infty$ (Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);
$3\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}, p \neq 2, \infty$ (Giordano-Pestov; F-LA-Mb-T);

Examples

Theorem

The following classes have the approximate Ramsey property:
1 The finite dimensional Hilbert spaces (or, equivalently, the finite dimensional subspaces of ℓ_{2}) (Gromov-Milman);
2 The finite dimensional subspaces of $L_{p}[0,1]$, for $p \neq 4,6,8, \ldots, \infty$ (Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);
B $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}, p \neq 2, \infty$ (Giordano-Pestov; F-LA-Mb-T);
$4\left\{\ell_{\infty}^{n}\right\}_{n \geq 0}$ (Bartošová-LA-Lupini-Mbombo);

Examples

Theorem

The following classes have the approximate Ramsey property:
1 The finite dimensional Hilbert spaces (or, equivalently, the finite dimensional subspaces of ℓ_{2}) (Gromov-Milman);
2 The finite dimensional subspaces of $L_{p}[0,1]$, for $p \neq 4,6,8, \ldots, \infty$ (Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);
B $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}, p \neq 2, \infty$ (Giordano-Pestov; F-LA-Mb-T);
$4\left\{\ell_{\infty}^{n}\right\}_{n \geq 0}$ (Bartošová-LA-Lupini-Mbombo);
5 The class of finite dimensional polyhedral spaces (B-LA-L-Mb);

Examples

Theorem

The following classes have the approximate Ramsey property:
1 The finite dimensional Hilbert spaces (or, equivalently, the finite dimensional subspaces of ℓ_{2}) (Gromov-Milman);
2 The finite dimensional subspaces of $L_{p}[0,1]$, for $p \neq 4,6,8, \ldots, \infty$ (Giordano-Pestov; Ferenczi-LA-Mbombo-Todorcevic);
B $\left\{\ell_{p}^{n}\right\}_{n \in \mathbb{N}}, p \neq 2, \infty$ (Giordano-Pestov; F-LA-Mb-T);
$4\left\{\ell_{\infty}^{n}\right\}_{n \geq 0}$ (Bartošová-LA-Lupini-Mbombo);
5 The class of finite dimensional polyhedral spaces ($B-L A-L-M b$);
6 The class of all finite dimensional normed spaces ($B-L A-L-M b$).

Previous Known results

1 Odell-Rosenthal-Schlumprecht proved that for every $1 \leq p \leq \infty$, every $m \in \mathbb{N}$ and every $\varepsilon>0$ there is $n \in \mathbb{N}$ such that

$$
\ell_{p}^{n} \longrightarrow\left(\ell_{p}^{m}\right)_{\varepsilon}^{\ell_{p}^{1}} ;
$$

Previous Known results

1 Odell-Rosenthal-Schlumprecht proved that for every $1 \leq p \leq \infty$, every $m \in \mathbb{N}$ and every $\varepsilon>0$ there is $n \in \mathbb{N}$ such that

$$
\ell_{p}^{n} \longrightarrow\left(\ell_{p}^{m}\right)_{\varepsilon}^{\ell_{p}^{1}} ;
$$

Their proof uses tools from Banach space theory (like unconditionality) to find many symmetries;

Previous Known results

1 Odell-Rosenthal-Schlumprecht proved that for every $1 \leq p \leq \infty$, every $m \in \mathbb{N}$ and every $\varepsilon>0$ there is $n \in \mathbb{N}$ such that

$$
\ell_{p}^{n} \longrightarrow\left(\ell_{p}^{m}\right)_{\varepsilon}^{\ell_{p}^{1}} ;
$$

Their proof uses tools from Banach space theory (like unconditionality) to find many symmetries;
2 Gowers has an improvement for $p=\infty$;

Previous Known results

1 Odell-Rosenthal-Schlumprecht proved that for every $1 \leq p \leq \infty$, every $m \in \mathbb{N}$ and every $\varepsilon>0$ there is $n \in \mathbb{N}$ such that

$$
\ell_{p}^{n} \longrightarrow\left(\ell_{p}^{m}\right)_{\varepsilon}^{\ell_{p}^{1}} ;
$$

Their proof uses tools from Banach space theory (like unconditionality) to find many symmetries;
2 Gowers has an improvement for $p=\infty$;
3 Matoušek-Rödl proved the first result for $1 \leq p<\infty$ combinatorially (using spreads).

Consequences in topological dynamics

Definition

A Banach space X is called approximately ultrahomogeneous (aUH) when for every finite dimensional subspace F of X, every $\varepsilon>0$ and every isometric embedding $\gamma: F \rightarrow X$ there is some global isometry I of X such that $\|I \upharpoonright F-\gamma\|<\varepsilon$.

Consequences in topological dynamics

Definition

A Banach space X is called approximately ultrahomogeneous (aUH) when for every finite dimensional subspace F of X, every $\varepsilon>0$ and every isometric embedding $\gamma: F \rightarrow X$ there is some global isometry I of X such that $\|I \upharpoonright F-\gamma\|<\varepsilon$.

Examples of (aUH) are

- ℓ_{2};

Consequences in topological dynamics

Definition

A Banach space X is called approximately ultrahomogeneous (aUH) when for every finite dimensional subspace F of X, every $\varepsilon>0$ and every isometric embedding $\gamma: F \rightarrow X$ there is some global isometry I of X such that $\|I \upharpoonright F-\gamma\|<\varepsilon$.

Examples of (aUH) are

- ℓ_{2};
- $L_{p}[0,1]$ (Lusky) $p \neq 4,6,8, \ldots$;

Consequences in topological dynamics

Definition

A Banach space X is called approximately ultrahomogeneous (aUH) when for every finite dimensional subspace F of X, every $\varepsilon>0$ and every isometric embedding $\gamma: F \rightarrow X$ there is some global isometry I of X such that $\|I \upharpoonright F-\gamma\|<\varepsilon$.

Examples of (aUH) are

- ℓ_{2};
- $L_{p}[0,1]$ (Lusky) $p \neq 4,6,8, \ldots$;
- The Gurarij space.

Consequences in topological dynamics

Theorem (metric Kechris-Pestov-Todorcevic correspondence) Suppose that X is (aUH). TFAE:

Consequences in topological dynamics

Theorem (metric Kechris-Pestov-Todorcevic correspondence) Suppose that X is (aUH). TFAE:

- The group of isometries $\operatorname{Iso}(X)$ with its strong operator topology is extremely amenable;

Consequences in topological dynamics

Theorem (metric Kechris-Pestov-Todorcevic correspondence) Suppose that X is (aUH). TFAE:

- The group of isometries $\operatorname{Iso}(X)$ with its strong operator topology is extremely amenable;
- The class $\operatorname{Age}(X)$ of finite dimensional subspaces of X has the (ARP).

ARP for $\left\{\ell_{p}^{n}\right\}_{n}$ is a multidim Borsuk-Ulam

The intention is to relate our result with the Borsuk-Ulam Theorem.

ARP for $\left\{\ell_{p}^{n}\right\}_{n}$ is a multidim Borsuk-Ulam

The intention is to relate our result with the Borsuk-Ulam Theorem. Recall that one of the several equivalent versions (Lusternik-Schnirelmann Theorem) of the Borsuk-Ulam theorem states that if the unit sphere \mathbb{S}^{n} of ℓ_{2}^{n+1} is covered by $n+1$ many open sets, then one of them contains a point x and its antipodal $-x$.

ARP for $\left\{\ell_{p}^{n}\right\}_{n}$ is a multidim Borsuk-Ulam

The intention is to relate our result with the Borsuk-Ulam Theorem. Recall that one of the several equivalent versions (Lusternik-Schnirelmann Theorem) of the Borsuk-Ulam theorem states that if the unit sphere \mathbb{S}^{n} of ℓ_{2}^{n+1} is covered by $n+1$ many open sets, then one of them contains a point x and its antipodal $-x$.

Definition

Let (X, d) be a metric space, $\varepsilon>0$. We say that an open covering \mathscr{U} of X is ε-fat when $\left\{U_{-\varepsilon}\right\}_{U \in \mathscr{U}}$ is still a covering of X.

ARP for $\left\{\ell_{p}^{n}\right\}_{n}$ is a multidim Borsuk-Ulam

The intention is to relate our result with the Borsuk-Ulam Theorem. Recall that one of the several equivalent versions (Lusternik-Schnirelmann Theorem) of the Borsuk-Ulam theorem states that if the unit sphere \mathbb{S}^{n} of ℓ_{2}^{n+1} is covered by $n+1$ many open sets, then one of them contains a point x and its antipodal $-x$.

Definition

Let (X, d) be a metric space, $\varepsilon>0$. We say that an open covering \mathscr{U} of X is ε-fat when $\left\{U_{-\varepsilon}\right\}_{U \in \mathscr{U}}$ is still a covering of X.

It is not difficult to see that if X is compact, then every open covering is ε-fat for some $\varepsilon>0$.

Theorem (ARP for $\left\{\ell_{p}^{n}\right\}_{n}$)

For every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some $\mathbf{n}_{p}(d, m, r, \varepsilon)$ such that for every ε-fat open covering \mathscr{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there exists $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$ such that

Theorem (ARP for $\left\{\ell_{p}^{n}\right\}_{n}$)

For every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some $\mathbf{n}_{p}(d, m, r, \varepsilon)$ such that for every ε-fat open covering \mathscr{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there exists $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$ such that

$$
\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{m}\right) \subseteq U \text { for some } U \in \mathscr{U} .
$$

Theorem (ARP for $\left\{\ell_{p}^{n}\right\}_{n}$)

For every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some $\mathbf{n}_{p}(d, m, r, \varepsilon)$ such that for every ε-fat open covering \mathscr{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there exists $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$ such that

$$
\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{m}\right) \subseteq U \text { for some } U \in \mathscr{U} .
$$

Borsuk-Ulam Theorem is the statement

Theorem (ARP for $\left\{\ell_{p}^{n}\right\}_{n}$)

For every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some $\mathbf{n}_{p}(d, m, r, \varepsilon)$ such that for every ε-fat open covering \mathscr{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there exists $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$ such that

$$
\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{m}\right) \subseteq U \text { for some } U \in \mathscr{U} .
$$

Borsuk-Ulam Theorem is the statement

$$
\mathbf{n}_{p}(1,1, r, \varepsilon)=r \text { for all } \varepsilon>0
$$

Theorem (ARP for $\left\{\ell_{p}^{n}\right\}_{n}$)

For every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some $\mathbf{n}_{p}(d, m, r, \varepsilon)$ such that for every ε-fat open covering \mathscr{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there exists $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$ such that

$$
\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{m}\right) \subseteq U \text { for some } U \in \mathscr{U} .
$$

Borsuk-Ulam Theorem is the statement

$$
\mathbf{n}_{p}(1,1, r, \varepsilon)=r \text { for all } \varepsilon>0
$$

because $\operatorname{Emb}\left(\ell_{p}^{1}, \ell_{p}^{r}\right)=\mathbb{S}_{p}^{r-1}$, and $\operatorname{Emb}\left(\ell_{p}^{1}, \ell_{p}^{1}\right)=\{ \pm \operatorname{Id} \mathbb{R}\}$

Theorem (ARP for $\left\{\ell_{p}^{n}\right\}_{n}$)

For every $1 \leq p \leq \infty$, every integers d, m and r and every $\varepsilon>0$ there is some $\mathbf{n}_{p}(d, m, r, \varepsilon)$ such that for every ε-fat open covering \mathscr{U} of $\operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{n}\right)$ with cardinality at most r there exists $\varrho \in \operatorname{Emb}\left(\ell_{p}^{m}, \ell_{p}^{n}\right)$ such that

$$
\varrho \circ \operatorname{Emb}\left(\ell_{p}^{d}, \ell_{p}^{m}\right) \subseteq U \text { for some } U \in \mathscr{U}
$$

Borsuk-Ulam Theorem is the statement

$$
\mathbf{n}_{p}(1,1, r, \varepsilon)=r \text { for all } \varepsilon>0
$$

because $\operatorname{Emb}\left(\ell_{p}^{1}, \ell_{p}^{r}\right)=\mathbb{S}_{p}^{r-1}$, and $\operatorname{Emb}\left(\ell_{p}^{1}, \ell_{p}^{1}\right)=\{ \pm \operatorname{Id} \mathbb{R}\}$
Problem
Does there exists $\mathbf{n}_{p}(d, m, r, \varepsilon)$ independent of ε ?

Hints of the proofs. $p=2$:

1 Gromov and Milman proved that the unitary group $\mathbb{U}=\operatorname{Iso}\left(\ell_{2}\right)$ is a Lévy group (concentration of measure), hence extremely amenable;

Hints of the proofs. $p=2$:

1 Gromov and Milman proved that the unitary group $\mathbb{U}=\operatorname{Iso}\left(\ell_{2}\right)$ is a Lévy group (concentration of measure), hence extremely amenable;
$2 \ell_{2}$ is obviously ultrahomogeneous;

Hints of the proofs. $p=2$:

1 Gromov and Milman proved that the unitary group $\mathbb{U}=\operatorname{Iso}\left(\ell_{2}\right)$ is a Lévy group (concentration of measure), hence extremely amenable;
$2 \ell_{2}$ is obviously ultrahomogeneous;
3 By the KPT correspondence, we have the (ARP) of Age $\left(\ell_{2}\right)$, and (trivially) of $\left\{\ell_{2}^{n}\right\}_{n \in \mathbb{N}}$.

Hints of the proofs. $p \neq 2, \infty$:

1 For $1 \leq p \neq 2, \infty$, the group $\operatorname{Iso}\left(L_{p}[0,1]\right)$ is, by Banach-Lamperti, topologically isomorphic to the semidirect product of $L^{0}([0,1],\{-1,1\})$ and the non-singular transformations Aut ${ }^{*}([0,1])$; both of them are Lévy (Giordano-Pestov), so Iso $\left(L_{p}[0,1]\right)$ is extremely amenable; notice that all the groups are topologically isomorphic;

Hints of the proofs. $p \neq 2, \infty$:

1 For $1 \leq p \neq 2, \infty$, the group $\operatorname{Iso}\left(L_{p}[0,1]\right)$ is, by Banach-Lamperti, topologically isomorphic to the semidirect product of $L^{0}([0,1],\{-1,1\})$ and the non-singular transformations Aut* $([0,1])$; both of them are Lévy (Giordano-Pestov), so Iso $\left(L_{p}[0,1]\right)$ is extremely amenable; notice that all the groups are topologically isomorphic;
2 Lusky proved that $L_{p}[0,1], p \neq 4,6,8, \ldots, \infty$ is (aUH); this gives the (ARP) of $\operatorname{Age}\left(L_{p}[0,1]\right)$ for those p 's.

Hints of the proofs. $p \neq 2, \infty$:

\llbracket All $L_{p}[0,1]$ are approximately homogeneous for $\left\{\ell_{p}^{n}\right\}_{n}$;

Hints of the proofs. $p \neq 2, \infty$:

1 All $L_{p}[0,1]$ are approximately homogeneous for $\left\{\ell_{p}^{n}\right\}_{n}$;
2 Schechtman proved that for small enough $\delta>0, \delta$-isometric embeddings between ℓ_{p}^{n},s are close to isometric embeddings;

Hints of the proofs. $p \neq 2, \infty$:

1 All $L_{p}[0,1]$ are approximately homogeneous for $\left\{\ell_{p}^{n}\right\}_{n}$;
2 Schechtman proved that for small enough $\delta>0, \delta$-isometric embeddings between ℓ_{p}^{n},s are close to isometric embeddings;
3 the (EA) of $\operatorname{Iso}\left(L_{p}[0,1]\right)$ and the previous two facts give that $\left\{\ell_{p}^{n}\right\}_{n}$ has the (ARP) for all $1 \leq p<\infty$;

Hints of the proofs. $p \neq 2, \infty$:

1 All $L_{p}[0,1]$ are approximately homogeneous for $\left\{\ell_{p}^{n}\right\}_{n}$;
2 Schechtman proved that for small enough $\delta>0, \delta$-isometric embeddings between ℓ_{p}^{n},s are close to isometric embeddings;
3 the (EA) of $\operatorname{Iso}\left(L_{p}[0,1]\right)$ and the previous two facts give that $\left\{\ell_{p}^{n}\right\}_{n}$ has the (ARP) for all $1 \leq p<\infty$;
4 When $p=4,6,8, \ldots$ there are arbitrarily large finite dimensional subspaces X of L_{p} well complemented in L_{p} having isometric copies badly complemented. The coloring asking if a copy of $\widehat{X} \in\binom{\ell_{p}^{n}}{X}$ is well or badly complemented is a bad (discrete) coloring.

Hints of the proofs. $p=\infty$

The proof by B-LA-L-Mb goes as follows:
1 First of all, one establishes the (ARP) of $\left\{\ell_{\infty}^{n}\right\}_{n}$ as a consequence of the Dual Ramsey Theorem by Graham and Rothschild;

Hints of the proofs. $p=\infty$

The proof by B-LA-L-Mb goes as follows:
1 First of all, one establishes the (ARP) of $\left\{\ell_{\infty}^{n}\right\}_{n}$ as a consequence of the Dual Ramsey Theorem by Graham and Rothschild;
2 Then one proves the (ARP) of the class of finite dimensional polyhedral spaces Pol; recall that a f.d. polyhedral space is a space whose unit ball is a polytope, i.e. it has finitely many extreme points; this is done by using the injective envelope of P : this is a pair $\left(\gamma, \ell_{\infty}^{n_{P}}\right)$ such that $\gamma_{P}: P \rightarrow \ell_{\infty}^{n_{P}}$ is an isometric embedding with the property that any other $\gamma: P \rightarrow \ell_{\infty}^{n}$ factors through γ_{P}; this allows to reduce colorings of $\operatorname{Emb}\left(P, \ell_{\infty}^{n}\right)$ to colorings of $\operatorname{Emb}\left(\ell_{\infty}^{n_{P}}, \ell_{\infty}^{n}\right)$.

Hints of the proofs. $p=\infty$

3 An arbitrary f.d. space is limit of polyhedral spaces;
4 For every $\delta, \varepsilon>0$ and every f.d. X, Y there is some f.d. Z and an isometric embedding $I: Y \rightarrow Z$ such that

$$
I \circ \operatorname{Emb}_{\delta}(X, Y) \subseteq(\operatorname{Emb}(X, Z))_{\varepsilon+\delta}
$$

The Dual Ramsey Theorem

Definition

Let $\left(S,<_{S}\right)$ and $\left(T,<_{T}\right)$ be two linearly ordered sets. A surjection $\theta: S \rightarrow T$ is called a rigid-surjection when $\min \theta^{-1}\left(t_{0}\right)<\min \theta^{-1}\left(t_{1}\right)$ for every $t_{0}<t_{1}$ in T. Let $\operatorname{Epi}(S, T)$ be collection of all those surjections.

The Dual Ramsey Theorem

Definition

Let $\left(S,<_{S}\right)$ and $\left(T,<_{T}\right)$ be two linearly ordered sets. A surjection $\theta: S \rightarrow T$ is called a rigid-surjection when $\min \theta^{-1}\left(t_{0}\right)<\min \theta^{-1}\left(t_{1}\right)$ for every $t_{0}<t_{1}$ in T. Let $\operatorname{Epi}(S, T)$ be collection of all those surjections.

Theorem (Dual Ramsey Theorem; Graham and Rothschild)
For every finite linearly ordered sets S and T, and $r \in \mathbb{N}$ there exists $n \geq \# T$ such that every r-coloring of $\operatorname{Epi}(n, S)$ has a monochromatic set of the form $\operatorname{Epi}(T, S) \circ \sigma$ for some $\sigma \in \operatorname{Epi}(n, T)$.

Definition

Let $\mathscr{E}_{n \times k}$ be the collection of all $n \times k$ matrices representing (in the unit bases of \mathbb{F}^{k} ad \mathbb{F}^{n}) a linear isometry between ℓ_{∞}^{k} and ℓ_{∞}^{n}.

Definition

Let $\mathscr{E}_{n \times k}$ be the collection of all $n \times k$ matrices representing (in the unit bases of \mathbb{F}^{k} ad \mathbb{F}^{n}) a linear isometry between ℓ_{∞}^{k} and ℓ_{∞}^{n}.

Proposition

$A \in \mathscr{E}_{n \times k}$ if and only if each column vector has ∞-norm one and each row vector has ℓ_{1}-norm at most 1 .

Definition

Let $\mathscr{E}_{n \times k}$ be the collection of all $n \times k$ matrices representing (in the unit bases of \mathbb{F}^{k} ad \mathbb{F}^{n}) a linear isometry between ℓ_{∞}^{k} and ℓ_{∞}^{n}.

Proposition

$A \in \mathscr{E}_{n \times k}$ if and only if each column vector has ∞-norm one and each row vector has ℓ_{1}-norm at most 1 .

Given $\varepsilon>0$, let \mathscr{N} be a finite ε-dense subset of the unit ball $B_{\ell_{1}^{k}}$
1 containing 0 and the unit vectors u_{i}, and
2 such that for every non-zero $v \in B_{\ell_{1}^{k}}$ there is $w \in \mathscr{N}$ such that

$$
\|v-w\|_{1}<\varepsilon \text { and }\|w\|_{1}<\|v\|_{1} \text {. e.g., for large } l \varepsilon \geq 1
$$

$$
\mathscr{N}=\left(\left\{ \pm \frac{i}{k l}\right\}_{i \leq k l}\right)^{k} \cap B_{\ell_{1}^{k}}
$$

Let $<$ be any total ordering on \mathscr{N} such that $v<w$ when $\|v\|_{1}<\|w\|_{1}$. We order n canonically.

Let $<$ be any total ordering on \mathscr{N} such that $v<w$ when $\|v\|_{1}<\|w\|_{1}$. We order n canonically.

Definition

Let $\Phi: \operatorname{Epi}(n, \mathscr{N}) \rightarrow \mathscr{E}_{n \times k}$ be defined for $\sigma:\{1, \ldots, n\} \rightarrow \mathscr{N}$ as the $n \times k$-matrix A_{σ} whose ξ-row vector, $1 \leq \xi \leq n$, is $\sigma(\xi)$.

It is easy to see that $\Phi(\sigma) \in \mathscr{E}_{n \times k}$.

Let $<$ be any total ordering on \mathscr{N} such that $v<w$ when $\|v\|_{1}<\|w\|_{1}$. We order n canonically.

Definition

Let $\Phi: \operatorname{Epi}(n, \mathscr{N}) \rightarrow \mathscr{E}_{n \times k}$ be defined for $\sigma:\{1, \ldots, n\} \rightarrow \mathscr{N}$ as the $n \times k$-matrix A_{σ} whose ξ-row vector, $1 \leq \xi \leq n$, is $\sigma(\xi)$.

It is easy to see that $\Phi(\sigma) \in \mathscr{E}_{n \times k}$. To simplify, suppose that $\mathbb{F}=\mathbb{R}$.
Proposition
There is a finite set $\Gamma \subseteq \mathscr{E}_{n \times k}$ such that for every other $A \in \mathscr{E}_{n \times k}$ there exists $B \in \Gamma$ such that

$$
A^{\mathrm{t}} B=\operatorname{Id}_{k}
$$

We order now $\Delta:=\mathscr{N} \times \Gamma$ lexicographically, where Δ is arbitrarily ordered. Given now k, m, a number of colors r, we use apply the DR theorem to \mathscr{N} and Δ to find the corresponding n.

We order now $\Delta:=\mathscr{N} \times \Gamma$ lexicographically, where Δ is arbitrarily ordered. Given now k, m, a number of colors r, we use apply the DR theorem to \mathscr{N} and Δ to find the corresponding n. Then n works:
Given $c: \mathscr{E}_{n \times k} \rightarrow r$, we have the induced color

$$
c \circ \Phi: \operatorname{Epi}(n, \mathscr{N}) \rightarrow r
$$

Let $\varrho \in \operatorname{Epi}(n, \Delta)$ such that c is constant on $\operatorname{Epi}(\Delta, \mathscr{N}) \circ \varrho$. Let now $R \in \mathscr{E}_{n \times m}$ be the matrix whose ξ-column is $A v$ where $\varrho(\xi)=(v, A)$.

Proposition
For every $B \in \mathscr{E}_{m \times d}$ there exists $\sigma \in \operatorname{Epi}(\Delta, \mathscr{N})$ such that $\|R B-\Phi(\varrho \circ \sigma)\|_{\infty}<\varepsilon$.

We want to follow the same strategy than for $p=\infty$. Let $\mathscr{E}_{n \times d}^{p}$ be the collection of matrices that represent isometric embeddings from ℓ_{p}^{d} into ℓ_{p}^{n}; they are characterized by the fact that each column vector is p-normalized and on each row there is at most one non-zero entry.

We want to follow the same strategy than for $p=\infty$. Let $\mathscr{E}_{n \times d}^{p}$ be the collection of matrices that represent isometric embeddings from ℓ_{p}^{d} into ℓ_{p}^{n}; they are characterized by the fact that each column vector is p-normalized and on each row there is at most one non-zero entry. Note that $\Phi: \operatorname{Epi}(n, \mathscr{N}) \rightarrow \mathscr{M}_{n \times k}$ defined as above does not give isometric embedding matrices (repeating rows will increase the p-norm of the columns); this indicates that we have the p-normalize, and that each repetition must have, up to ε, the same cardinality;

We want to follow the same strategy than for $p=\infty$. Let $\mathscr{E}_{n \times d}^{p}$ be the collection of matrices that represent isometric embeddings from ℓ_{p}^{d} into ℓ_{p}^{n}; they are characterized by the fact that each column vector is p-normalized and on each row there is at most one non-zero entry. Note that $\Phi: \operatorname{Epi}(n, \mathscr{N}) \rightarrow \mathscr{M}_{n \times k}$ defined as above does not give isometric embedding matrices (repeating rows will increase the p-norm of the columns); this indicates that we have the p-normalize, and that each repetition must have, up to ε, the same cardinality;

Definition

A mapping $T: n \rightarrow \Delta$ is called an ε-equipartition, $\varepsilon \geq 0$ when

$$
\frac{n}{\# \Delta}(1-\varepsilon) \leq \# F^{-1}(\delta) \leq \frac{n}{\# \Delta}(1+\varepsilon)
$$

for every $\delta \in \Delta$. Let $\operatorname{Equi}_{\varepsilon}(n, \Delta)$ be the set of all ε-equipartions, and Equi (n, Δ) be the rigid-surjections (0-)equipartitions.

Equipartitions

Theorem (Approximate Ramsey property for ε-equipartitions)
Let d,m,r$\in \mathbb{N}, \varepsilon_{0} \geq 0$ and $\varepsilon_{1}, \delta>0$, and let $\varepsilon_{2} \geq 0$ be such that $\left(1-\varepsilon_{2}\right) \leq\left(1-\varepsilon_{0}\right)\left(1-\varepsilon_{1}\right) \leq\left(1+\varepsilon_{0}\right)\left(1+\varepsilon_{1}\right) \leq\left(1+\varepsilon_{2}\right)$. Then there is n such that for every coloring $c: \operatorname{Equi}_{\varepsilon_{2}}(n, d) \rightarrow\{1, \ldots, r\}$ there exists $R \in \operatorname{Equi}_{\varepsilon_{1}}(n, m)$ and $1 \leq i \leq r$ such that

$$
\operatorname{Equi}_{\varepsilon_{0}}(m, d) \circ R \subseteq\left(c^{-1}(i)\right)_{2 \varepsilon_{0}\left(1+\varepsilon_{1}\right)+\delta\left(1+\varepsilon_{0}\right)} .
$$

Equipartitions

Theorem (Approximate Ramsey property for ε-equipartitions)
Let d,m,r$\in \mathbb{N}, \varepsilon_{0} \geq 0$ and $\varepsilon_{1}, \delta>0$, and let $\varepsilon_{2} \geq 0$ be such that $\left(1-\varepsilon_{2}\right) \leq\left(1-\varepsilon_{0}\right)\left(1-\varepsilon_{1}\right) \leq\left(1+\varepsilon_{0}\right)\left(1+\varepsilon_{1}\right) \leq\left(1+\varepsilon_{2}\right)$. Then there is n such that for every coloring $c:$ Equi $_{\varepsilon_{2}}(n, d) \rightarrow\{1, \ldots, r\}$ there exists $R \in \operatorname{Equi}_{\varepsilon_{1}}(n, m)$ and $1 \leq i \leq r$ such that

$$
\text { Equi }_{\varepsilon_{0}}(m, d) \circ R \subseteq\left(c^{-1}(i)\right)_{2 \varepsilon_{0}\left(1+\varepsilon_{1}\right)+\delta\left(1+\varepsilon_{0}\right)} .
$$

Problem (Dual Ramsey for equipartitions)
Suppose that $d \mid m$, and r is arbitrary. Does there exist $m \mid n$ such that every r-coloring of $\operatorname{Equi}(n, d)$ has a monochromatic set of the form $\operatorname{Equi}(m, d) \circ \sigma$ for some $\sigma \in \operatorname{Equi}(n, m)$?

Concentration

We prove the previous result by using concentration of measure of the Hamming cube Δ^{n}.

Definition
An mm space is a metric space with a (probability) measure on it.

Concentration

We prove the previous result by using concentration of measure of the Hamming cube Δ^{n}.

Definition
An mm space is a metric space with a (probability) measure on it. Given such mm space (X, d, μ), and $\varepsilon>0$, the concentration function

$$
\alpha_{X}(\varepsilon):=1-\inf \left\{\mu\left(A_{\varepsilon}\right): \mu(A) \geq \frac{1}{2}\right\}
$$

Concentration

We prove the previous result by using concentration of measure of the Hamming cube Δ^{n}.

Definition
An mm space is a metric space with a (probability) measure on it.
Given such mm space (X, d, μ), and $\varepsilon>0$, the concentration function

$$
\alpha_{X}(\varepsilon):=1-\inf \left\{\mu\left(A_{\varepsilon}\right): \mu(A) \geq \frac{1}{2}\right\}
$$

A sequence $\left(X_{n}\right)_{n}$ of mm-spaces is called Lévy when

$$
\alpha_{X_{n}}(\varepsilon) \rightarrow_{n} 1 \text { for every } \varepsilon>0,
$$

Concentration

We prove the previous result by using concentration of measure of the Hamming cube Δ^{n}.

Definition
An mm space is a metric space with a (probability) measure on it.
Given such mm space (X, d, μ), and $\varepsilon>0$, the concentration function

$$
\alpha_{X}(\varepsilon):=1-\inf \left\{\mu\left(A_{\varepsilon}\right): \mu(A) \geq \frac{1}{2}\right\}
$$

A sequence $\left(X_{n}\right)_{n}$ of mm-spaces is called Lévy when

$$
\alpha_{X_{n}}(\varepsilon) \rightarrow_{n} 1 \text { for every } \varepsilon>0
$$

and normal Lévy when there are $c_{1}, c_{2}>0$ such that

$$
\alpha_{X_{n}}(\varepsilon) \leq c_{1} e^{-c_{2} \varepsilon^{2} n}
$$

It is known that

$$
\alpha_{\left(\Delta^{n}, d, \mu\right)}(\varepsilon) \leq e^{-\frac{1}{8} \varepsilon^{2} n},
$$

where d is the normalized Hamming distance

$$
d(f, g):=\frac{1}{n} \#(f \neq g)
$$

and μ is the normalized counting measure.

It is known that

$$
\alpha_{\left(\Delta^{n}, d, \mu\right)}(\varepsilon) \leq e^{-\frac{1}{8} \varepsilon^{2} n},
$$

where d is the normalized Hamming distance

$$
d(f, g):=\frac{1}{n} \#(f \neq g)
$$

and μ is the normalized counting measure.
Proposition
(Equi $(n, \Delta), d, \mu)_{n}$ is asymptotically normal Lévy.

Rephrasing the Dual Ramsey Theorem

We say that $0-1$-valued $n \times k$-matrix is boolean if the column vectors are non null and the supports of column vectors of A form a partition of the target set n.

Rephrasing the Dual Ramsey Theorem

We say that $0-1$-valued $n \times k$-matrix is boolean if the column vectors are non null and the supports of column vectors of A form a partition of the target set n.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Rephrasing the Dual Ramsey Theorem

We say that $0-1$-valued $n \times k$-matrix is boolean if the column vectors are non null and the supports of column vectors of A form a partition of the target set n.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

We denote them by $\mathscr{I}_{n \times k}^{\mathrm{ba}}$. We call a boolean matrix A ordered when the support of the $i^{\text {th }}$ column of A starts before the support of the $(i+1)^{\mathrm{th}}$ column of A.

Rephrasing the Dual Ramsey Theorem

We say that $0-1$-valued $n \times k$-matrix is boolean if the column vectors are non null and the supports of column vectors of A form a partition of the target set n.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

We denote them by $\mathscr{I}_{n \times k}^{\mathrm{ba}}$. We call a boolean matrix A ordered when the support of the $i^{\text {th }}$ column of A starts before the support of the $(i+1)^{\mathrm{th}}$ column of A. Given a boolean $n \times k$-matrix, let $\operatorname{corr}(A) \in \mathrm{S}_{k}$ be the unique permutation matrix (i.e. automorphism of the Boolean algebra $\mathscr{P}(k))$ such that $A \cdot \operatorname{corr}(A)$ is ordered.

$0-1$ valued matrices

Proposition (DRT, embedding version)
For every k, m and r there is $n \geq k$ such that every r-coloring $c: \mathscr{I}_{n \times k}^{\mathrm{ba}} \rightarrow r$ factors

for some ordered boolean $n \times m$-matrix R. Observe that $\operatorname{corr}(R \cdot A)=\operatorname{corr}(A)$.

Matrices over a finite field \mathbb{F}

Let $\mathscr{I}_{n \times k}(\mathbb{F})$ be the collection of $n \times k$-matrices of rank k.

Matrices over a finite field \mathbb{F}

Let $\mathscr{I}_{n \times k}(\mathbb{F})$ be the collection of $n \times k$-matrices of rank k. Given $A \in \mathscr{I}_{n \times k}(\mathbb{F})$, let $\operatorname{red}(A) \in \mathrm{GL}\left(\mathbb{F}^{k}\right)$ be such that $A \cdot \operatorname{red}(A)$ is in Reduced Column Echelon Form (RCEF).

Matrices over a finite field \mathbb{F}

Let $\mathscr{I}_{n \times k}(\mathbb{F})$ be the collection of $n \times k$-matrices of rank k. Given $A \in \mathscr{I}_{n \times k}(\mathbb{F})$, let $\operatorname{red}(A) \in \mathrm{GL}\left(\mathbb{F}^{k}\right)$ be such that $A \cdot \operatorname{red}(A)$ is in Reduced Column Echelon Form (RCEF).

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
0 & 0 & 0 & \cdots & \cdots & 0 \\
1 & 0 & 0 & \cdots & \cdots & 0 \\
* & 0 & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
* & 0 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & \cdots & \cdots & 0 \\
* & * & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & & & \vdots \\
* & * & 0 & 0 & \cdots & 0 \\
* & * & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots
\end{array}\right)
$$

Theorem

For every $k, m \in \mathbb{N}$ and $r \in \mathbb{N}$ there exists $n \geq k$ such that every coloring $c: \mathscr{I}_{n \times k}(\mathbb{F}) \rightarrow r$ factors

for some $R \in \mathscr{I}_{n \times m}(\mathbb{F})$ in $R C E F$.

Theorem

For every $k, m \in \mathbb{N}$ and $r \in \mathbb{N}$ there exists $n \geq k$ such that every coloring $c: \mathscr{I}_{n \times k}(\mathbb{F}) \rightarrow r$ factors

for some $R \in \mathscr{I}_{n \times m}(\mathbb{F})$ in $R C E F$.
Observe that $\operatorname{red}(R \cdot A)=\operatorname{red}(A)$ if R is in RCEF.

Theorem

For every $k, m \in \mathbb{N}$ and $r \in \mathbb{N}$ there exists $n \geq k$ such that every coloring $c: \mathscr{I}_{n \times k}(\mathbb{F}) \rightarrow r$ factors

for some $R \in \mathscr{I}_{n \times m}(\mathbb{F})$ in $R C E F$.
Observe that $\operatorname{red}(R \cdot A)=\operatorname{red}(A)$ if R is in RCEF.
Theorem (Graham-Leeb-Rothschild)
Suppose that \mathbb{F} is a finite field. For every $k, m \in \mathbb{N}$ and $r \in \mathbb{N}$ there exists $n \geq k$ such that every r-coloring of $\operatorname{Gr}\left(k, \mathbb{F}^{n}\right)$, the k-Grassmannians of \mathbb{F}^{n}, has a monochromatic set of the form $\operatorname{Gr}(k, V)$ for some $V \in \operatorname{Gr}\left(m, \mathbb{F}^{n}\right)$.

What for full rank matrices with entries in \mathbb{R}, \mathbb{C} ?

There is a natural factorization result, but now approximative. The set of matrices is endowed with natural metrics, to each full-rank matrix A we associate a norm $\tau(A)$. It is proved that this mapping, with the right metrics is 1-Lipschitz. We obtain a factorization theorem for full rank matrices.

The Factorization theorem for Grassmannians is more geometrical:

The Factorization theorem for Grassmannians is more geometrical:

- Let $E_{p}=\left\{\begin{array}{ll}L_{p}[0,1] & \text { if } 1 \leq p<\infty, \\ \mathbb{G} \text { the Gurarij space } & \text { if } p=\infty .\end{array}\right.$;

The Factorization theorem for Grassmannians is more geometrical:
■ Let $E_{p}=\left\{\begin{array}{ll}L_{p}[0,1] & \text { if } 1 \leq p<\infty, \\ \mathbb{G} \text { the Gurarij space } & \text { if } p=\infty .\end{array}\right.$;

- Let \mathscr{N}_{k} be the polish space of all norms on \mathbb{F}^{k}, and let \mathscr{N}_{k}^{p} be the set of all norms $N \in \mathscr{N}_{k}$ such that $\left(\mathbb{F}^{k}, N\right)$ can be isometrically embedded into E_{p}. GL $\left(\mathbb{F}^{k}\right)$ acts on $\mathscr{N}_{k}, A \cdot N(x):=N\left(A^{-1} x\right)$;

The Factorization theorem for Grassmannians is more geometrical:

- Let $E_{p}=\left\{\begin{array}{ll}L_{p}[0,1] & \text { if } 1 \leq p<\infty, \\ \mathbb{G} \text { the Gurarij space } & \text { if } p=\infty .\end{array}\right.$;
- Let \mathscr{N}_{k} be the polish space of all norms on \mathbb{F}^{k}, and let \mathscr{N}_{k}^{p} be the set of all norms $N \in \mathscr{N}_{k}$ such that $\left(\mathbb{F}^{k}, N\right)$ can be isometrically embedded into E_{p}. GL $\left(\mathbb{F}^{k}\right)$ acts on $\mathscr{N}_{k}, A \cdot N(x):=N\left(A^{-1} x\right)$;
- The metric
$\omega(M, N):=\log \left(\max \left\{\|\operatorname{Id}\|_{\left(\mathbb{F}^{k}, M\right),\left(\mathbb{F}^{k}, N\right),},\|\operatorname{Id}\|_{\left(\mathbb{F}^{k}, N\right),\left(\mathbb{F}^{k}, M\right)}\right\}\right)$ is a compatible GL($\left.\mathbb{F}^{k}\right)$-metric on \mathscr{N}_{k};

The Factorization theorem for Grassmannians is more geometrical:

- Let $E_{p}=\left\{\begin{array}{ll}L_{p}[0,1] & \text { if } 1 \leq p<\infty, \\ \mathbb{G} \text { the Gurarij space } & \text { if } p=\infty .\end{array}\right.$;
- Let \mathscr{N}_{k} be the polish space of all norms on \mathbb{F}^{k}, and let \mathscr{N}_{k}^{p} be the set of all norms $N \in \mathscr{N}_{k}$ such that $\left(\mathbb{F}^{k}, N\right)$ can be isometrically embedded into E_{p}. GL $\left(\mathbb{F}^{k}\right)$ acts on $\mathscr{N}_{k}, A \cdot N(x):=N\left(A^{-1} x\right)$;
- The metric
$\omega(M, N):=\log \left(\max \left\{\|\operatorname{Id}\|_{\left(\mathbb{F}^{k}, M\right),\left(\mathbb{F}^{k}, N\right),},\|\operatorname{Id}\|_{\left(\mathbb{F}^{k}, N\right),\left(\mathbb{F}^{k}, M\right)}\right\}\right)$ is a compatible GL($\left.\mathbb{F}^{k}\right)$-metric on \mathscr{N}_{k};
■ The k-Banach-Mazur compactum \mathscr{B}_{k} is the orbit space $\left(\mathscr{N}_{k}, \omega\right) / / \mathrm{GL}\left(\mathbb{F}^{k}\right)$. Let $\mathscr{B}_{k}^{p}:=\left(\mathscr{N}_{k}^{p}, \omega\right) / / \mathrm{GL}\left(\mathbb{F}^{k}\right)$;

The Factorization theorem for Grassmannians is more geometrical:
$■$ Let $E_{p}=\left\{\begin{array}{ll}L_{p}[0,1] & \text { if } 1 \leq p<\infty, \\ \mathbb{G} \text { the Gurarij space } & \text { if } p=\infty .\end{array} ;\right.$

- Let \mathscr{N}_{k} be the polish space of all norms on \mathbb{F}^{k}, and let \mathscr{N}_{k}^{p} be the set of all norms $N \in \mathscr{N}_{k}$ such that $\left(\mathbb{F}^{k}, N\right)$ can be isometrically embedded into E_{p}. GL $\left(\mathbb{F}^{k}\right)$ acts on $\mathscr{N}_{k}, A \cdot N(x):=N\left(A^{-1} x\right)$;
- The metric
$\omega(M, N):=\log \left(\max \left\{\|\operatorname{Id}\|_{\left(\mathbb{F}^{k}, M\right),\left(\mathbb{F}^{k}, N\right),},\|\operatorname{Id}\|_{\left(\mathbb{F}^{k}, N\right),\left(\mathbb{F}^{k}, M\right)}\right\}\right)$ is a compatible GL($\left.\mathbb{F}^{k}\right)$-metric on \mathscr{N}_{k};
■ The k-Banach-Mazur compactum \mathscr{B}_{k} is the orbit space $\left(\mathscr{N}_{k}, \omega\right) / / \mathrm{GL}\left(\mathbb{F}^{k}\right)$. Let $\mathscr{B}_{k}^{p}:=\left(\mathscr{N}_{k}^{p}, \omega\right) / / \mathrm{GL}\left(\mathbb{F}^{k}\right)$;
- We define the p-gap (opening) metric $\Lambda_{p}(V, W)$ between $V, W \in \operatorname{Gr}\left(k, \mathbb{F}^{n}\right)$ as the Hausdorff distance (with respect to M) between the unit balls of $\left(V,\|\cdot\|_{p}\right)$ and $\left(W,\|\cdot\|_{p}\right)$.
- the p-Kadets metric is the compatible Gromov-Hausdorff distance on \mathscr{B}_{k}^{p} defined by

$$
\gamma_{p}(\mathbf{M}, \mathbf{N}):=\inf _{T, U} \Lambda_{p}(T X, U Y)
$$

where the infimum runs over all isometric embeddings $T:\left(\mathbb{F}^{k}, M\right) \rightarrow E_{p}, U:\left(\mathbb{F}^{k}, N\right) \rightarrow E_{p}$.

- the p-Kadets metric is the compatible Gromov-Hausdorff distance on \mathscr{B}_{k}^{p} defined by

$$
\gamma_{p}(\mathbf{M}, \mathbf{N}):=\inf _{T, U} \Lambda_{p}(T X, U Y)
$$

where the infimum runs over all isometric embeddings $T:\left(\mathbb{F}^{k}, M\right) \rightarrow E_{p}, U:\left(\mathbb{F}^{k}, N\right) \rightarrow E_{p}$.
■ Let $\tau_{p}:\left(\operatorname{Gr}\left(k, \mathbb{F}^{n}\right), \Lambda_{p}\right) \rightarrow\left(\mathscr{B}_{k}^{p}, \gamma_{p}\right)$ be the 1-Lipschitz map that assigns to $V \in \operatorname{Gr}\left(k, \mathbb{F}^{n}\right)$ the "isometric type" of $\left(V,\|\cdot\|_{p}\right)$.

The mapping τ_{BM} for the sup norm

Given a Plane (so $k=2$)

The mapping τ_{BM} for the sup norm

we consider its section with the cube

The mapping τ_{BM} for the sup norm

Another section with the same shape

The mapping τ_{BM} for the sup norm

GLR for $\mathbb{F}=\mathbb{R}, \mathbb{C}$

Theorem (GLR Theorem for \mathbb{R}, p-version)
Let $p \neq 4,6,8, \ldots$. For every $k, m \varepsilon>0$ and every $\left(K, d_{K}\right)$ compact metric there is n such that for every 1-Lipschitz coloring $c:\left(\operatorname{Gr}\left(k, \mathbb{F}^{n}\right), \Lambda_{p}\right) \rightarrow\left(K, d_{K}\right)$ there is some $R \in \operatorname{Gr}\left(m, \mathbb{F}^{n}\right)$ such that $\left(R,\|\cdot\|_{p}\right)$ is isometric to ℓ_{p}^{m}, and a 1-Lipschitz $\widehat{c}:\left(\mathscr{B}_{k}^{p}, \gamma_{p}\right) \rightarrow\left(K, d_{K}\right)$ such that

GLR Theorem for \mathbb{R}, \mathbb{C}, Euclidean version

Theorem

For every $k, m, C>0, \varepsilon>0$ and every $\left(K, d_{K}\right)$ compact metric there is $n \geq k$ such that for every norm M on \mathbb{R}^{n}, every C-Lipschitz coloring of $\left(\operatorname{Gr}\left(k, \mathbb{R}^{n}\right), \Lambda_{M}\right)$ by $\left(K, d_{K}\right)$-stabilizes in some $\operatorname{Gr}(k, V)$, that is, there exists $V \in \operatorname{Gr}\left(m, \mathbb{F}^{n}\right)$ such that

$$
\operatorname{diam}_{K}(c(\operatorname{Gr}(k, V)))<\varepsilon
$$

GLR Theorem for \mathbb{R}, \mathbb{C}, Euclidean version

Theorem

For every $k, m, C>0, \varepsilon>0$ and every $\left(K, d_{K}\right)$ compact metric there is $n \geq k$ such that for every norm M on \mathbb{R}^{n}, every C-Lipschitz coloring of $\left(\operatorname{Gr}\left(k, \mathbb{R}^{n}\right), \Lambda_{M}\right)$ by $\left(K, d_{K}\right) \varepsilon$-stabilizes in some $\operatorname{Gr}(k, V)$, that is, there exists $V \in \operatorname{Gr}\left(m, \mathbb{F}^{n}\right)$ such that

$$
\operatorname{diam}_{K}(c(\operatorname{Gr}(k, V)))<\varepsilon
$$

This is consequence of Dvoretzky's Theorem and the GLR Theorem for $p=2$.

Thank You!

