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We present two areas of research.

Part I

The first involves developing Ramsey theory to study the precise structure
of cofinal types of ultrafilters. This includes new canonical equivalence
relations on trees, extending the Erdős-Rado canonization theorem for
infinite colorings on finite sets.

Part II

The second involves developing Ramsey theory on trees in order to find
bounds on the Ramsey degrees of homogeneous structures. A name for an
ultrafilter is used in a key step.
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Erdős-Rado Canonical Equivalence Relations

Given k ≥ 1 and I ⊆ k := {0, . . . , k − 1}, the canonical equivalence
relation EI is defined as follows:

For ā = {a0, . . . , ak−1} and b̄ = {b0, . . . , bk−1},

ā EI b̄ ⇔ ∀i ∈ I (ai = bi ).

Thm. (Erdős-Rado) Given k ≥ 1 and E an equivalence relation on
[N]k , there is an infinite M ⊆ N and an I ⊆ k such that E � M = EI � M.

This is really a theorem about infinitely many colors.
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For ā = {a0, . . . , ak−1} and b̄ = {b0, . . . , bk−1},
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Part I: Tukey theory of ultrafilters

U and V denote ultrafilters on countable base sets.

Def. V is Tukey reducible to U (V ≤T U) if there is a map f : U → V
such that each f -image of a filter base for U is a filter base for V.

U ≡T V iff U ≤T V and V ≤T U .

The Tukey equivalence class of an ultrafilter U , denoted [U ]T , is called
its Tukey type. These are exactly the cofinal types of ultrafilters.
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Why study Tukey types of ultrafilters?

1 The Tukey type of an ultrafilter is the cofinal type of its neighborhood
basis as a point in the Stone-Čech compactification of ω.

2 A well-proven means of classifying partial orders.

3 Tukey types of ultrafilters are a coarsening of the Rudin-Keisler types.

V ≤RK U iff ∃f : ω → ω such that {f (U) : U ∈ U} generates V.

V ≤RK U =⇒ V ≤T U .

Thus, every Tukey type is partitioned into isomorphism (RK) classes.

4 Some very interesting Ramsey theory has developed from this study.
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Main types of results

1 Differences between ≤T and ≤RK .

2 When a Tukey non-top ultrafilter exists.

3 Canonical cofinal maps.

4 When ≤T implies ≤RK or even ≤RB .

5 Structures embedded into the Tukey types of ultrafilters.

6 Exact structures in the Tukey (and Rudin-Keisler) types of ultrafilters.

This talk will focus on 6, with a nod to 3.
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Ramsey ultrafilters are Tukey minimal

From now on, assume your favorite axiom or method guaranteeing the
existence of the presented ultrafilters: CH, MA, cardinal invariants, or
forcing.

An ultrafilter U is Ramsey if for each k ≥ 2,

U → (U)k .

Thm. (Todorcevic) Ramsey ultrafilters are Tukey minimal.

His proof makes essential use of a theorem of Pudlák and Rödl, which
extends the canonical equivalence relation theorem of Erdős and Rado
to general barriers.

Blass previously showed that Ramsey ultrafilters are RK minimal.
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to general barriers.

Blass previously showed that Ramsey ultrafilters are RK minimal.
Dobrinen Ramsey, trees, ultrafilters University of Denver 7 / 50



Initial structures and connections with Ramsey theory

Def. A collection of Tukey types of nonprincipal ultrafilters (C ,≤T ) is
an initial Tukey structure if for each [U ]T ∈ C , for each V ≤T U , also
[V]T ∈ C .

Similarly, one can investigate initial Rudin-Keisler structures.
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Initial Tukey and RK types of weakly Ramsey ultrafilters

An ultrafilter U is weakly Ramsey if it satisfies the partition relation

U → (U)2
l ,2.

Thm. [DT2] The forcing of Laflamme adds a weakly Ramsey ultrafilter
which has exactly one Tukey predecessor: the Tukey type of its
projected Ramsey ultrafilter.

To obtain this, we constructed a topological Ramsey space R1 dense
inside Laflamme’s forcing.

Blass had previously shown that any weakly Ramsey ultrafilter has
exactly one RK predecessor: it’s projected Ramsey ultrafilter.
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Members of the topological Ramsey space R1
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Analogue of [N]1: First Approximations
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Analogue of [N]1: First Approximations

Erdős-Rado Analogue. Given any equivalence relation E on first
approximations to members of the space R1, there is a member
X ∈ R1 such that the restriction of E to X is canonical: given by
projections via one of the three subtrees of {(), (0), (00)}.

Dobrinen Ramsey, trees, ultrafilters University of Denver 17 / 50



Analogue of [N]2: Second Approximations

The set of second approximations to members of R1 are subtrees of the
following form.

The following are a couple of examples.
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Analogue of Erdős-Rado for Second Approximations

Thm. Given an equivalence relation E on the set of second
approximations to members of the space R1, there is a subtree T of

and there is some member X ∈ R1 such that E is canonized by the
projection map πT .

So there are (21 + 1)(22 + 1) canonical equivalence relations on the
second approximations.
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More generally, we obtained in [DT2] a theorem which canonizes
equivalence relations on any barrier in R1 via projection maps to subtrees.

Other canonical equivalence relations on trees were proved in order to
obtain the following structural results.

Dobrinen Ramsey, trees, ultrafilters University of Denver 21 / 50



More generally, we obtained in [DT2] a theorem which canonizes
equivalence relations on any barrier in R1 via projection maps to subtrees.

Other canonical equivalence relations on trees were proved in order to
obtain the following structural results.

Dobrinen Ramsey, trees, ultrafilters University of Denver 21 / 50



Initial chains in Tukey and Rudin-Keisler structures

Thm. [D/T 2,3] For each 1 ≤ α < ω1, there is an ultrafilter Uα such
that the Tukey structure below Uα forms the linear order (α + 1)∗.

This is the same for the initial Rudin-Keisler structure below Uα.
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Other partial orders as initial structures

Thm. [D/Mijares/Trujillo] ([ω]<ω,⊆) is an initial Tukey structure, and
moreover consists of Tukey types of p-points.

Let k ≥ 1 and let Ki , i < k , be any Fräıssé classes of finite relational
structures with the Ramsey property (and OPFAP). Then the set of
isomorphism classes of (K0, . . . ,Kk−1), partially ordered by embedding,
is realized as the initial Rudin-Keisler structure of some p-point.

This work encompasses as special cases the k-arrow, not (k + 1)-arrow
ultrafilters of Baumgartner and Taylor, and the n-square ultrafilters of
Blass.
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Initial Tukey and RK structures of size c

Thm. [D 1-3] There are ultrafilters with interesting partition
properties, not p-points, which yield an initial Rudin-Keisler structure
which is a linear order of size c which is isomorphic to a non-standard
model of N.

The initial Tukey structure contains a copy of the initial Rudin-Keisler
structure but also contains more.
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General outline for the preceding results

1 Construct a topological Ramsey space which forces the desired
ultrafilter. In most cases, these were constructed to be dense subsets
of previously known forcings.

2 Prove a new Ramsey classification theorem for equivalence relations
on fronts (extension of Pudlák-Rödl, which itself extends Erdős-Rado).

3 Show that cofinal maps from the associated ultrafilter are continuous.

4 Transform the continuous cofinal map to a Rudin-Keisler map on a
base set which is a front on the given topological Ramsey space.
Apply the canonization theorem to decode what these RK classes are.

Remark: In [DT2,3] and [DMT], the structure of the isomorphism classes
inside the Tukey types are completely classified.
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Part II

Ramsey Theory on Trees and applications to big Ramsey degrees of
homogeneous structures.
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Finite Structural Ramsey Theory

(B
A

)
denotes the set of copies of A in B.

A Fräıssé class K has the Ramsey property if for each pair A ≤ B in K and
l ≥ 1, there is some C in K such that for each coloring f :

(C
A

)
→ l , there

is a B ′ ∈
(C
B

)
such that f takes one color on

(B′

A

)
.

∀A ≤ B ∈ K, ∀l ≥ 1, ∃C ∈ K such that C → (B)Al .

Some Fräıssé classes of finite structures with the Ramsey property:
Boolean algebras, vector spaces over a finite field, ordered graphs,
ordered hypergraphs, ordered graphs omitting k-cliques, ordered metric
spaces, and many others.
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Small Ramsey Degrees

A Fräıssé class not satisfying the Ramsey Property may still possess some
Ramseyness.

A Fräıssé class K has small Ramsey degrees if for each A ∈ K there is an
integer t(A,K) such that for each B ∈ K there is a C ∈ K such that

C → (B)Al ,t(A,K).

The classes of finite graphs, hypergraphs, graphs omitting k-cliques, etc.,
have small Ramsey degrees.
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Ramsey Theory on Infinite Structures

Def. (Kechris, Pestov, Todorcevic 2005)
Let K be a Fräıssé class and F = Flim(K). F has finite big Ramsey
degrees if for each A ∈ K, there is a finite number T (A,K) such that
for any coloring of

(F
A

)
into finitely many colors, there is a substructure

F′ of F, with F′ ∼= F, in which
(F′

A

)
take no more than T (A,K) colors.

∀A ∈ Age(S), ∃T (A) such that S → (S)Al ,T (A).

Infinite structures known to have finite big Ramsey degrees: The
rationals (Devlin 1979); the Rado graph (Sauer 2006); the countable
ultrametric Urysohn space (Nguyen Van Thé 2008); the Qn and S(2),
S(3) (Laflamme, NVT, Sauer 2010), and a few others, and the
triangle-free homogeneous graph (D 2017).
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Connections with Topological Dynamics

Thm. (Kechris/Pestov/Todorcevic 2005) Aut(Flim K) has the fixed
point on compacta property if and only if K has the Ramsey property
and consists of rigid elements.

(Nguyen Van Thé 2013) Extended above result to Fräıssé classes that
have precompact expansions with the Ramsey property (small Ramsey
degrees).

(Zucker 2017) Characterized universal completion flows of Aut(Flim
K) whenever Flim K admits a big Ramsey structure (big Ramsey
degrees).

Dobrinen Ramsey, trees, ultrafilters University of Denver 30 / 50



Connections with Topological Dynamics

Thm. (Kechris/Pestov/Todorcevic 2005) Aut(Flim K) has the fixed
point on compacta property if and only if K has the Ramsey property
and consists of rigid elements.
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Strong Trees and Milliken’s Theorem

A Ramsey theorem on strong trees due to Milliken plays a central role in
Devlin’s and Sauer’s results. A new colored version was key in [L/NVT/S
2010].

A tree T ⊆ 2<ω is a strong tree iff it is either isomorphic to 2<ω or to 2≤k

for some finite k.
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Strong Subtree ∼= 2≤2, Ex. 1

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Dobrinen Ramsey, trees, ultrafilters University of Denver 32 / 50



Strong Subtree ∼= 2≤2, Ex. 2
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Strong Subtree ∼= 2≤2, Ex. 3

〈〉
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A Ramsey Theorem for Strong Trees

Thm. (Milliken 1979) Let k ≥ 0, l ≥ 2, and a coloring of all the
subtrees of 2<ω which are isomorphic to 2≤k into l colors. Then there
is an infinite strong subtree S ⊆ 2<ω such that all copies of 2≤k in S
have the same color.

Milliken’s Theorem builds on the Halpern-Läuchli Theorem.
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Structure of Proof that H3 has finite big Ramsey degrees

I Develop new notion of strong coding tree to represent triangle-free
homogeneous graph, H3.

II Prove a Ramsey Theorem for strictly similar finite antichains.

(a) Three new forcings are used (and names for ultrafilters) to prove new
Halpern-Läuchli Theorems for strong coding trees.

(b) Prove a new Ramsey Theorem for finite preserving trees.
− correct analogue of Milliken’s Theorem.

III Finish.
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Part I: Strong Coding Trees
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Nodes in Trees can Code Graphs

Let A be a graph. Enumerate the vertices of A as 〈vn : n < N〉.

A set of nodes {tn : n < N} in 2<ω codes A if and only if for each pair
m < n < N,

vn E vm ⇔ tn(|tm|) = 1.

The number tn(|tm|) is called the passing number of tn at tm.

t0

t1

t2

•

•

•

v0

v1

v2
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First Approach: Strong Triangle-Free Trees

Finite strong triangle-free trees are finite trees in with a unary predicate for
distinguished nodes coding vertices, and which branch as much as possible,
subject to no branch being extendable to a node coding a triangle.

The only forbidden structures are sets of coding nodes ci , cj , ck such that
cj(|ci |) = ck(|ci |) = ck(|cj |) = 1 as this codes a triangle.

Splitting Criterion: A node t at the level of the n-th coding node cn
extends right if and only if t and cn have no parallel 1’s.

Every node always extends left.

Infinite strong triangle-free trees have coding nodes which are dense and
which code the universal triangle-free graph.
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Strong triangle-free tree S

〈〉

c0

c1

c2

c3

c4

c5

•

•

•

•

•

•

v0

v1

v2

v3

v4

v5
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Almost sufficient

One can develop almost all the Ramsey theory one needs on strong
triangle-free trees

except for the base case, vertex colorings via colorings of coding nodes:
there is a bad coloring for these.

To get around this, we stretch and skew the trees so that at most one
coding or one splitting node occurs at each level.

These skewed trees densely coding H3 are called strong coding trees.
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Strong coding tree T

c0

c1

c2

c3

•

•

•

•

v0

v1

v2

v3

Write T ≤ T if T is a subtree of T strongly similar to T .
Every tree T ≤ T is a strong coding tree: Its coding nodes are dense and
code H3, and the “zip up” forms a strong triangle-free tree.
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Ramsey Theorem for Strictly Similar Antichains

Theorem. (D.) Let A be a finite antichain of coding nodes. Associate
A with the tree it induces, and let c color all strictly similar copies of A
in T into finitely many colors.

Then there is a strong coding tree S ≤ T in which all strictly similar
copies of A in S have the same color.
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G a graph with three vertices and no edges

A tree A coding G

〈〉
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G a graph with three vertices and no edges

A tree B coding G . B is strictly similar to A.

〈〉
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Another tree C coding G

C is not strictly similar to A.
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The triangle-free homogeneous graph has finite big
Ramsey degrees

Theorem. (D.) For each finite triangle-free graph A, there is a positive
integer T (A,K3) such that for any coloring of all copies of A in H3 into
finitely many colors, there is a subgraph H ≤ H3, again universal
triangle-free, such that all copies of A in H take no more than
T (A,K3) colors.

∀A ∈ K3, ∃T (A,K3) such that H3 → (H3)Al ,T (A,K3).

This is the first result on big Ramsey degrees of a homogeneous
structure omitting a non-trivial substructure.
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The two strict similarity types of Edge Codings
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Non-edges have eight strict similarity types
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