Approximate Ramsey theory

Dana Bartošová

Carnegie Mellon University

Ultrafilters, Ramsey theory and dynamics Université de Lyon November 23, 2017

Dana Bartošová Approximate Ramsey theory

・ロト ・聞ト ・ヨト ・ヨト

Ramsey's theorem

For every $k \le m$, $r \ge 2$, and every colouring of k-element subsets of \mathbb{N} with r-many colours there is an infinite subset X of \mathbb{N} such that all k-element subsets of X have the same colour.

Ramsey's theorem

For every $k \leq m, r \geq 2$, and every colouring of k-element subsets of \mathbb{N} with r-many colours there is an infinite subset X of \mathbb{N} such that all k-element subsets of X have the same colour.

Finite Ramsey's theorem

For every $k \leq m$ and $r \geq 2$, there exists n such that for every colouring of k-element subsets of n with r-many colours there is a subset X of n of size m such that all k-element subsets of X have the same colour.

イロト 不得 トイヨト イヨト

THE CLASS OF FINITE LINEAR ORDERS IS RAMSEY Given A and B finite linear orders, $|A| \leq |B|$ and $r \geq 2$, there exists a finite linear order C such that whenever we colour copies of A in C by r colours, there is a copy B' of B in C such that all copies of A in B' have the same colour.

・ロト ・四ト ・ヨト ・ヨト

THE CLASS OF FINITE LINEAR ORDERS IS RAMSEY Given A and B finite linear orders, $|A| \leq |B|$ and $r \geq 2$, there exists a finite linear order C such that whenever we colour copies of A in C by r colours, there is a copy B' of B in C such that all copies of A in B' have the same colour.

EQUIVALENTLY (Pestov, 1998)

The group of order preserving bijections of rationals, $\operatorname{Aut}(\mathbb{Q}, <)$ is extremely amenable.

THE CLASS OF FINITE LINEAR ORDERS IS RAMSEY Given A and B finite linear orders, $|A| \leq |B|$ and $r \geq 2$, there exists a finite linear order C such that whenever we colour copies of A in C by r colours, there is a copy B' of B in C such that all copies of A in B' have the same colour.

EQUIVALENTLY (Pestov, 1998)

The group of order preserving bijections of rationals, $\mathrm{Aut}(\mathbb{Q},<)$ is extremely amenable.

A topological group G is extremely amenable if it has a fixed point under any continuous action on a compact Hausdorff space. Equivalently, every minimal G-flow is a singleton.

イロト 不得 トイヨト イヨト 二日

Proof

Topology on $G = \operatorname{Aut}(\mathbb{Q}, <)$ is given by stabilizors of finite suborders

$$G_A = \{g \in G : ga = a \ \forall a \in A\}$$

イロト イポト イヨト イヨト 二日

Proof

Topology on $G=\operatorname{Aut}(\mathbb{Q},<)$ is given by stabilizors of finite suborders

$$G_A = \{g \in G : ga = a \ \forall a \in A\}$$

and therefore

$$G/G_A \longleftrightarrow$$
 copies of A in \mathbb{Q} .

Dana Bartošová Approximate Ramsey theory

イロト イポト イヨト イヨト 二日

Topology on $G = \operatorname{Aut}(\mathbb{Q}, <)$ is given by stabilizors of finite suborders

$$G_A = \{g \in G : ga = a \ \forall a \in A\}$$

and therefore

$$G/G_A \longleftrightarrow$$
 copies of A in \mathbb{Q} .

Finite linear orders are a Ramsey class \longleftrightarrow every partition $G = \bigcup_{i=1}^{r} G_A K_i$ has a thick part \longleftrightarrow there are no disjoint topologically syndetic sets.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

We like ω -homogeneous structures

Every automorphism group is a group of automorphisms of an ultrahomogeneous structure.

・ロト ・ 一日 ト ・ 日 ト

We like ω -homogeneous structures

Every automorphism group is a group of automorphisms of an ultrahomogeneous structure.

 $G = \operatorname{Aut}(\mathcal{A})$ with the topology of pointwise convergence

・ コット ふぼう きょうう

We like ω -homogeneous structures

Every automorphism group is a group of automorphisms of an ultrahomogeneous structure.

 $G = \operatorname{Aut}(\mathcal{A})$ with the topology of pointwise convergence

Theorem (Kechris, Pestov, and Todorčević)

G is extremely amenable iff finitely generated substructures of \mathcal{A} form a rigid Ramsey class.

RAMSEY CLASSES

- finite linear orders (Ramsey);
- finite linearly ordered graphs (Nešetřil and Rödl);
- finite linearly ordered metric spaces (Nešetřil);
- finite Boolean algebras (Graham and Rothschild).

・ロト ・ 一日 ト ・ 日 ト

RAMSEY CLASSES

- finite linear orders (Ramsey);
- finite linearly ordered graphs (Nešetřil and Rödl);
- finite linearly ordered metric spaces (Nešetřil);
- finite Boolean algebras (Graham and Rothschild).

EXTREMELY AMENABLE GROUPS

- $\operatorname{Aut}(\mathbb{Q}, <)(\operatorname{Pestov});$
- Aut(R, <) = group of automorphisms of the random ordered graph (KPT);
- Iso(U, d) = group of isometries of the Urysohn space (Pestov);
- U(l₂) = group of unitaries of the separable Hilbert space (Gromov + Milman);
- LIso(G) = group of linear isometries of the Gurarij space (B + López-Abad + Mbombo).

Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, Iso(M) is extremely amenable \longleftrightarrow finitely-generated substructures satisfy the approximate Ramsey property (ARP).

Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, Iso(M) is extremely amenable \longleftrightarrow finitely-generated substructures satisfy the approximate Ramsey property (ARP).

FIRST EXAMPLE (Pestov) Iso(U, d) is e.a. \longleftrightarrow finite metric spaces satisfy ARP.

《曰》 《曰》 《曰》 《曰》

Theorem (Melleray-Tsankov)

For M approximately ultrahomogeneous, Iso(M) is extremely amenable \iff finitely-generated substructures satisfy the approximate Ramsey property (ARP).

FIRST EXAMPLE (Pestov) Iso(U, d) is e.a. \longleftrightarrow finite metric spaces satisfy ARP.

PREFIRST EXAMPLE (Gromov + Milman) $U(l_2)$ is e.a. \longleftrightarrow finite dimensional inner spaces satisfy ARP.

FIRST COMBINATORIAL PROOF (B + LA + M)Iso_l(\mathbb{G}) is e.a. \longleftrightarrow finite dimensional Banach spaces satisfy ARP.

イロト イポト イヨト イヨト 二日

(1) separable Banach space

Dana Bartošová Approximate Ramsey theory

・ロト ・四ト ・ヨト ・ヨト

æ

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space

イロト イヨト イヨト イヨト

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional, $i: E \hookrightarrow \mathbb{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$

(日)

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional, $i: E \hookrightarrow \mathbb{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$

LUSKY Conditions (1),(2),(3) uniquely define \mathbb{G} up to a linear isometry.

イロト 不得下 イヨト イヨト 二日

- (1) separable Banach space
- (2) contains isometric copy of every finite dimensional Banach space
- (3) for every E finite dimensional, $i: E \hookrightarrow \mathbb{G}$ isometric embedding and $\varepsilon > 0$ there is a linear isometry $f: \mathbb{G} \longrightarrow \mathbb{G}$

$$\|i - f \upharpoonright E\| < \varepsilon$$

LUSKY Conditions (1),(2),(3) uniquely define \mathbb{G} up to a linear isometry.

KUBIŚ-SOLECKI; HENSON Simple proof - metric Fraïssé theory.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

Dana Bartošová Approximate Ramsey theory

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

 $\bullet~E$ - finite dimensional subspace of $\mathbb G$

イロト イヨト イヨト イヨト 二日

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

- $\bullet~E$ finite dimensional subspace of $\mathbb G$
- $\varepsilon > 0$

 $\operatorname{Iso}_{l}(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

 $\bullet~E$ - finite dimensional subspace of $\mathbb G$

• $\varepsilon > 0$

$$V_{\varepsilon}(E) = \{g \in \operatorname{Iso}(\mathbb{G}) : \|g \upharpoonright E - \operatorname{id} \upharpoonright E\| < \varepsilon\}$$

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

 $\bullet~E$ - finite dimensional subspace of $\mathbb G$

 $\bullet \ \varepsilon > 0$

$$V_{\varepsilon}(E) = \{g \in \operatorname{Iso}(\mathbb{G}) : \|g \upharpoonright E - \operatorname{id} \upharpoonright E\| < \varepsilon\}$$

BEN YAACOV

 $\operatorname{Iso}_{l}(\mathbb{G})$ is a universal Polish group.

 $\operatorname{Iso}_l(\mathbb{G})$ + point-wise convergence topology = Polish group

BASIS

 $\bullet~E$ - finite dimensional subspace of $\mathbb G$

 $\bullet \ \varepsilon > 0$

$$V_{\varepsilon}(E) = \{g \in \operatorname{Iso}(\mathbb{G}) : \|g \upharpoonright E - \operatorname{id} \upharpoonright E\| < \varepsilon\}$$

BEN YAACOV

 $\operatorname{Iso}_{l}(\mathbb{G})$ is a universal Polish group.

Katětov construction

Dana Bartošová Approximate Ramsey theory

・ロト ・四ト ・ヨト ・ヨト

臣

Theorem (B+LA+M)

 $d \leq m$

Dana Bartošová Approximate Ramsey theory

Theorem (B+LA+M)

 $d \leq m$

r - number of colours

Dana Bartošová Approximate Ramsey theory

Theorem (B+LA+M)

 $\begin{aligned} &d \leq m \\ &r \text{ - number of colours} \\ &\varepsilon > 0 \end{aligned}$

Theorem (B+LA+M)

 $\begin{array}{l} d \leq m \\ r \ -number \ of \ colours \\ \varepsilon > 0 \\ \exists n \end{array}$

Theorem (B+LA+M)

 $d \leq m$

r - number of colours

 $\varepsilon > 0$

 $\exists n$

for every colouring $c : \operatorname{Emb}(l_{\infty}^d, l_{\infty}^n) \longrightarrow \{0, 1, \dots, r-1\}$

Theorem (B+LA+M)

 $d \leq m$

r - number of colours

 $\varepsilon > 0$

 $\exists n$

for every colouring $c : \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{n}) \longrightarrow \{0, 1, \dots, r-1\}$ there is $i \in \operatorname{Emb}(l_{\infty}^{m}, l_{\infty}^{n})$ and $\alpha < r$

イロト 不得下 イヨト イヨト 二日

Theorem (B+LA+M)

 $d \leq m$

r - number of colours

 $\varepsilon > 0$

 $\exists n$

for every colouring $c : \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{n}) \longrightarrow \{0, 1, \dots, r-1\}$ there is $i \in \operatorname{Emb}(l_{\infty}^{m}, l_{\infty}^{n})$ and $\alpha < r$

 $i \circ \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{m}) \subset (c^{-1}(\alpha))_{\varepsilon}$

Theorem (B+LA+M)

 $d \leq m$

r - number of colours

 $\varepsilon > 0$

 $\exists n$

for every colouring $c : \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{n}) \longrightarrow \{0, 1, \dots, r-1\}$ there is $i \in \operatorname{Emb}(l_{\infty}^{m}, l_{\infty}^{n})$ and $\alpha < r$

 $i \circ \operatorname{Emb}(l_{\infty}^{d}, l_{\infty}^{m}) \subset (c^{-1}(\alpha))_{\varepsilon}$

Theorem (B+LA+M)

 $\operatorname{Iso}_{l}(\mathbb{G})$ is extremely amenable.

Dana Bartošová Approximate Ramsey theory

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

d = 1: proof of Gowers' result on oscillation stability of the unit sphere in c_0 .

d = 1: proof of Gowers' result on oscillation stability of the unit sphere in c_0 .

In particular, multidimensional Hindman's theorem (finite sets version).

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

d = 1: proof of Gowers' result on oscillation stability of the unit sphere in c_0 .

In particular, multidimensional Hindman's theorem (finite sets version).

GENERAL CASE

Discretize and use dual Ramsey theorem of Graham and Rothschild.

(日)

- P Poulsen simplex
- $p-{\rm extreme}$ point in p
- $\operatorname{AH}(P,p)$ group of affine homeomorphisms of P fixing p

・ロト ・四ト ・ヨト ・ヨト

- P Poulsen simplex
- p extreme point in p

 $\operatorname{AH}(P,p)$ – group of affine homeomorphisms of P fixing p

Theorem (B+LA+M)

AH(P,p) is e.a. \longleftrightarrow finite dimensional simplexes with a distinguished extreme point satisfy ARP

P – Poulsen simplex p – extreme point in p ${\rm AH}(P,p)$ – group of affine homeomorphisms of P fixing p

Theorem (B+LA+M)

AH(P,p) is e.a. \longleftrightarrow finite dimensional simplexes with a distinguished extreme point satisfy ARP

Continuum is a compact connected space.

P – Poulsen simplex p – extreme point in p ${\rm AH}(P,p)$ – group of affine homeomorphisms of P fixing p

Theorem (B+LA+M)

AH(P,p) is e.a. \longleftrightarrow finite dimensional simplexes with a distinguished extreme point satisfy ARP

Continuum is a compact connected space.

L – Lelek fan (\equiv unique subcontinuum of the Cantor fan with dense set of endpoints)

< - total order on endpoints of type (\mathbb{Q} , <)

イロト 不得 トイヨト イヨト 二日

P – Poulsen simplex p – extreme point in p ${\rm AH}(P,p)$ – group of affine homeomorphisms of P fixing p

Theorem (B+LA+M)

AH(P,p) is e.a. \longleftrightarrow finite dimensional simplexes with a distinguished extreme point satisfy ARP

Continuum is a compact connected space.

L – Lelek fan (\equiv unique subcontinuum of the Cantor fan with dense set of endpoints)

< – total order on endpoints of type ($\mathbb{Q},<)$

Theorem (B+Kwiatkowska)

Homeo(L, <) is e.a. \longleftrightarrow generalization of Gowers' Hindman's theorem.

P – pseudoarc $p \in P$

イロト 不得 とうほう 不良とう

æ

P – pseudoarc $p \in P$

Is Homeo(P, p) e.a.?

Dana Bartošová Approximate Ramsey theory

・ロト ・ 四ト ・ ヨト ・ ヨト

э

THANK YOU!

Dana Bartošová Approximate Ramsey theory

・ロト ・御ト ・ヨト ・ヨト